
External Memory Minimum Spanning Trees

Dominik Schultes

August 2003

Bachelor-Arbeit

Fachrichtung 6.2 – Informatik, Universität des Saarlandes
angefertigt unter Betreuung von Priv. Doz. Dr. Peter Sanders, Max-Planck-Institut für Informatik

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Saarbr̈ucken, im August 2003

Abstract

While in the last years much theoretical work about external memory minimum spanning trees was done,
the practical realization of the designed algorithms was neglected. It is the goal of my Bachelor thesis to
fill this gap, i.e., we will show that the computation of minimum spanning trees of very large graphs is
possible efficiently not only in theory but also in practice.

Contents

1 Introduction 1
1.1 Minimum Spanning Trees. 1
1.2 External Memory Model. 1
1.3 External Memory Minimum Spanning Trees. 1

2 Dense Graphs 2

3 Sparse Graphs 3
3.1 General Approach. 3
3.2 Boruvka’s Algorithm . 3
3.3 Sibeyn and Meyer’s Algorithm. 4

4 Implementation 8
4.1 <stxxl> Library . 8
4.2 Data Structures. 8
4.3 Base Case. 9
4.4 Node Reduction with Buckets. 9
4.5 Node Reduction with a Priority Queue. 12
4.6 Main Program. .12
4.7 Randomization .13
4.8 Removal of Parallel Edges. 14
4.9 Ideas for Further Improvements. 14

5 Evaluation 15
5.1 Test Data .15
5.2 Test Environment and Settings. 15
5.3 Test Runs and Results. 16

A Reference Manual 24
A.1 Hierarchical Index . 24
A.2 Compound Index. .24
A.3 Class Documentation. 25

B Source Code 55
B.1 Main .55
B.2 Data Structures. .59
B.3 Base Case. .75
B.4 Buckets .78
B.5 Priority Queue. .84
B.6 Utilities .88

i

Chapter 1

Introduction

1.1 Minimum Spanning Trees
Finding a minimum spanning tree is the graph theoretical notation of a quite natural problem: we want to
connect several objects — not necessarily directly — with each other and the total costs should be as low
as possible. As example we could take a computer network: several computers have to be linked so that
every pair of computers can communicate with each other regardless of possible intermediate stations. The
expense of the used wires should be minimal.

In graph theory the problem can be formalized easily. In a connected, undirected and weighted graph
G = (V,E) with n vertices andm edges a spanning treeT = (V, F) is a connected and acyclic subgraph
of G that contains all nodes ofG. The weight of a spanning tree is the sum of the weights of all edges:
w(T) =

∑
e∈F w(e). A minimum spanning tree (MST) is a spanning tree with minimum weight.

The problem of finding a MST is interesting because of several reasons. First, it appears in praxis.
Second, the problem itself is interesting from a theoretical point of view, and third, the solution of it can be
used in order to solve other problems in graph theory, for instance, to find an approximate solution for the
travelling salesperson problem.

There are two well known algorithms that can be used to detect a MST inO(n2) (if the input is given
as adjacency matrix) resp. inO(m log m) time (if the input is given as adjacency lists), Prim’s algorithm
and Kruskal’s algorithm.

1.2 External Memory Model
In the main, our considerations refer to a simple model that focuses on two levels of the memory hierarchy,
the internal memory (main memory) and the external memory (hard disks). Due to physical reasons (the
access head has to find the right position) a disk access takes comparatively much time, the transfer itself
plays a tangential role [MSS03, p. 3]. Hence, it is reasonable to deal with blocks of data instead of single
items. Theinternal memory sizeis denoted asM and theblock sizeasB [AV88].

The main reason why we have to use external memory algorithms is the simple fact that we do not
possess enough internal memory since main memory isC times more expensive than hard disks; we assume
thatC ≈ 200 and that consequently a balanced system consists of internal and external memory in the ratio
of 1:200.

1.3 External Memory Minimum Spanning Trees
The External Memory MST problem deals with very large graphs, i.e., the graphs are so large that not all
information which are required for the computations fit in internal memory. Finding a minimum spanning
tree of such a graph is more difficult than the internal case since you have to ensure that you take advantage
of both spacial and temporal locality as much as possible. Neither Prim’s nor Kurskal’s algorithm has been
designed with this requirement in mind. Hence, in the worst case the processing of each node resp. edge
requires one external memory access. Therefore, we need a different approach.

1

Chapter 2

Dense Graphs

If we deal with large dense graphs, we are confronted with the following situation: there are so many edges
that they do not fit in internal memory so that we cannot apply an internal algorithm — but there are so
few nodes that we can afford some internal memory for each node, in other words, the internal memory
is in O(n). Generally, this is the precondition for a semi-external algorithm. In our case, we can use a
semi-external version of Kruskal’s algorithm [Ski98] in order to find a minimum spanning tree of a dense
graph. We sort the list of edges (by weight) in external memory and apply Kruskal’s algorithm so that the
sorted edges have to be scanned once. Hence, we needO(sort(m)) + O(scan(m)) = O(sort(m)) I/Os.

A union-find data structure is essential for Kruskal’s algorithm. Basically, we need for each node a
reference to the parent node. Additionally, we want for each canonical node of a set (= root of a tree) a
rank that is used to perform the union operations in such a way that the trees do not degenerate. Thus, the
size of the union-find data structure depends only linearly on the number of nodes so that it can be kept in
internal memory on the above mentioned precondition.

In order to keep the memory usage per node small, we store only the height of a tree (instead of the
size) as rank. Consequently, we use the union-by-height strategy [OW96], i.e., when we unite two trees,
we make the shorter one a subtree of the taller one; if both trees have the same height, an arbitrary one
becomes the subtree of the other one, whose height is increased. This strategy guarantees that the height
of each tree does not exceedlog n so thatlog log n bits are sufficient to store the rank. After each find
operation path compression is applied. (It is possible that the height of one tree is reduced due to path
compression. In this case the stored height isnot adjusted. The expense of a correction would exceed the
advantage of an exact value by far.)

Usually a dense graph is expected to consist ofO(n2) edges. As we want to use the distinction between
“dense” and “sparse” in order to specify the applicability of the semi-external algorithm, we consider
graphs with less edges as dense, too. With this in mind, the boundary between “dense” and “sparse” can
be computed with the help of the estimation of Section1.2 that a balanced system consists of internal and
external memory in the ratio of 1:C. Principally, we can process only graphs that fit in external memory.
If the edges are given as a list, we have to store for each edge the source vertex, the target vertex and the
weight. (To store the edges in adjacency lists or in an adjacency matrix would require more memory.) In
order to keep this calculation simple, we assume that a node identifier, a weight and a rank in the union-find
data structure needs one memory unit each. Hence, we need3m memory units to store the graph, while
the size of the external memory isC · M . This leads to3

C m ≤ M . For each node two memory units
are allocated in the union-find data structure, a reference to the parent node and the rank. As we want to
treat the case that the union-find data structure does not fit in internal memory, we obtain the constraint that
2n > M . If we combine these inequalities, we getm

n < 2
3C. Hence, we consider a graph with at least

2
3Cn edges as dense and a graph with less edges as sparse. Furthermore, we can state that dense graphs
(within this scope) can be processed by our semi-external algorithm.

Actually, a more sophisticated calculation could draw the line even at a smaller average vertex degree.

2

Chapter 3

Sparse Graphs

3.1 General Approach

If we deal with large sparse graphs, we can keep neither the nodes nor the edges in internal memory. Hence,
the semi-external version of Kruskal’s algorithm introduced in chapter2 cannot be applied directly so that
we need an external algorithm. Our basic goal isto reduce the number of nodesof the original graphG
until the union-find data structure of the remaining nodes (graphG′) fits in internal memory so that we can
apply the algorithm of chapter2 to G′. During the node reduction phase we obtain a part of a minimum
spanning tree ofG, which is combined with a minimum spanning tree ofG′ in order to get a complete
MST of G. The following lemma [JaJ92, p. 223] provides the foundation in order to achieve this goal.

Lemma 1. LetV =
⋃

Vi be an arbitrary partition ofV with the corresponding subgraphsGi = (Vi, Ei),
where1 ≤ i ≤ t. For eachi, there exists one minimum-weight edgeei connecting a vertex inVi to a vertex
in V \ Vi that belongs to a minimum spanning tree of the graphG = (V,E).

Proof. For an arbitrary subsetVi ⊂ V , let the setRi := {(r, s) ∈ E | r ∈ Vi ∧ s ∈ V \ Vi} contain all
edges that lead from one vertex inVi to a vertex out ofVi, and let the setSi ⊆ Ri contain the shortest
edges ofRi, i.e.,Si := {e ∈ Ri | w(e) = mine′∈Ri w(e′)}. We assume that there is a minimum spanning
treeT = (V, F) with a subsetVi ⊂ V so thatF ∩Si = ∅, i.e.,T doesnotcontain any of the shortest edges
that leaveVi.

Let (u′, v′) ∈ Si be an arbitrary shortest edge that connectsVi with V \ Vi. We add(u′, v′) to F and
obtain a cycle that contains(u′, v′) and a different edge(u, v) ∈ Ri\Si, i.e., an edge that leavesVi, but does
not belong to the shortest ones. We remove(u, v) and get another spanning treeT ′ with w(T ′) < w(T)
sincew((u′, v′)) < w((u, v)). This contradicts the assumption thatT is a minimum spanning tree.

3.2 Boruvka’s Algorithm

The most known node reduction algorithm that uses Lemma1 is Boruvka’s. At the beginning the partition
of G = (V,E) consists of single nodes. For each node a minimum-weight edge incident to it is found so
that the selected edges do not form a cycle. These edges are added to the treeT = (V, F), which initially
contains no edges and eventually will be a MST ofG. The next iteration deals with the partitionV =

⋃
Vi,

where eachVi is a connected component of the subgraphG′ = (V, F). Hence, one iteration, called a
Boruvka step, consists of the following substeps [Liu01]:

• for each node, find and mark an appropriate minimum-weight edge incident to it;

• determine the connected components formed by the marked edges;

• replace each connected component by a single (super-)vertex, in other words, relabel the edges in
such a way that the vertex IDs are replaced with the IDs of the appropriate connected components;

• optionally, eliminate the self-loops and multiple edges created by these contractions.

3

The algorithm terminates when the remaining graph can be processed by the semi-external algorithm or —
if Boruvka’s algorithm is used to find a complete MST — when|F | = n− 1.

In a basic version of this algorithm, we needO(sort(m)) I/Os for one Boruvka step in order to reduce
the number of vertices by a constant factor.O(log(n/M)) steps are required so that the remaining nodes
fit in internal memoryM . This results inO(sort(m) · log(n/M)) [CGG+95]. A top-down variant with the
same I/O complexity is presented in [ABW02].

An improved version [MSS03, p. 80–81] usesO(sort(m) · max{1, log log(nB/m)}) I/Os in order to
find a MST. This improvement is achieved by combining several steps into supersteps, where each superstep
still needsO(sort(m)) I/Os, but reduces more nodes than the basic step. A randomized algorithm, presented
in [ABW02], usesO(sort(m)) I/Os in the expected case.

In spite of the good asymptotic behaviour, an implementation of Boruvka’s algorithm probably would
lead to high constants in the running time. Hence, we will use a different algorithm that has the same
general approach.

3.3 Sibeyn and Meyer’s Algorithm

3.3.1 Informal Description

In a way Sibeyn and Meyer’s algorithm [SM] is a variant of Boruvka’s algorithm. During one step only the
minimum-weight edge incident to a node in the last subsetVt is determined and added to the tree instead
of finding a shortest edge for each subsetVi.

The input is given as a set ofm edges(u, v, c), whereu is the source vertex,v the target andc the
weight. As the graph is undirected an edge(u, v, c) implies that there is also an edge(v, u, c), although it
is not listed explicitly. The edges are stored in adjacency lists; each edge is stored only once, namely in the
list of the node with the higher identifier; self loops are thrown away since they are irrelevant. The chosen
data structure has the feature that only the list of the last node definitely contains all edges incident to it;
but that is quite enough as we concentrate on the last node during each step.

In order to get a new partition after each step, the graph is shrunk. The last node is merged with the
target vertex of the shortest edge incident to the last node, i.e., the target vertex adopts all edges from the
last node and the last node stops existing. Self loops that are created by this action are thrown away. This
merging corresponds with the union of the last node and the target vertex to a new subset ofV that is part of
the partition of the graph. Due to merging edges are relabeled because the former source vertex is replaced
with the target vertex of the shortest edge. In order to be able to restore the original endpoints when an
edge is added to the MST, the original labels are saved at the beginning so that each adjacency list contains
edges(v, c, e1, e2), wherev is the target,c the weight ande1, e2 the original endpoints.

3.3.2 Pseudo Code
Input: a setE of edges(u, v, c) that defines a connected, undirected and

weighted graphG with n nodes,
n′, the number of nodes that should remain

Output: a setT ⊆ E that defines (a part of) a minimum spanning tree ofG

let π bea random permutation over{1, . . . , n}
foreach (u, v, c) ∈ E do

if v < u then add(π(v), c, u, v) to the list ofπ(u)
else ifv > u then add(π(u), c, u, v) to the list ofπ(v);

for u = n down to n′ + 1 do
traverse all(v, c, e1, e2) in the list ofu and
determine thev for which c is minimum;
add(e1, e2, c) to T ;
foreach (w, c, e1, e2) in the list ofu do

if w < v then add(w, c, e1, e2) to the list ofv
else ifw > v then add(v, c, e1, e2) to the list ofw;

4

3.3.3 Correctness

The correctness follows directly from Lemma1.

3.3.4 Complexity

We assume that the input does not contain any self-loop (self-loops would be eliminated anyway during
the first step).

If initially the node indices are randomized (so that we get a uniform distribution), the probability that
an arbitrary edge is incident to the last vertex is1

n + 1
n = 2

n as it is sufficient if one of the endpoints is the
last node (the case that both endpoints are the last node cannot occur due to our assumption that there is no
self-loop). Hence, the expected number of edges in the list of the last node is2

nm.
Since the target vertex of the shortest edge is uniformly distributed, too, we obtain a uniform distribution

over the set{1, . . . , n − 1} after one reduction step if the edges have been uniformly distributed over
{1, . . . , n}: the probability that an endpoint of an edge is a certain nodex ∈ {1, . . . , n − 1} amounts to
1
n + 1

n ·
1

n−1 = 1
n−1 , namely the probability according to the assumed uniform distribution over{1, . . . , n}

plus the probability that the endpoint had been the last node and was then relabeled tox due to a reduction
step.

Using these facts, we can show by induction that the expected number of edges in the list of the currently
last nodeu ∈ {n′ + 1, . . . , n} is always less than (or equal to)2

um. Therefore, we obtain [SM]

Theorem 1. For reducing the number of nodes fromn to n′, the above algorithm processes an expected
number of less than

∑n
u=n′+1

(
2
um

)
' 2 ·m · (lnn− lnn′) edges.

3.3.5 Comparison with Boruvka’s Algorithm

The advantages of Sibeyn and Meyer’s algorithm over Boruvka’s algorithm are the following:

• During one Boruvka step2 ·m edges are processed in order to reduce the number of nodes by only
a factor 2 in the worst case. For a reduction by this factor, the expected number of processed edges
of Sibeyn and Meyer’s algorithm is less than2 ·m · ln 2 ' 1.39 ·m.

• Relabeling the edges due to shrinking of the graph is very easy in Sibeyn and Meyer’s algorithm
because the new identifier need not be looked up — in contrast with Boruvka’s algorithm, where the
new sourceand target vertices of all edges must be looked up. Furthermore, Sibeyn and Meyer’s
algorithm dispenses with finding connected components.

• In Sibeyn and Meyer’s algorithm the reduced graph can directly be taken as input for the semi-
external version of Kruskal’s algorithm since the firstn′ nodes are preserved. In Boruvka’s algorithm
it is more difficult to guarantee that the node identifiers are a sequence without gaps in order to be
able to index the union-find data structure.

• In Boruvka’s algorithm with full adjacency lists2 ·m edges have to be stored in total, in Sibeyn and
Meyer’s algorithm onlym edges are stored at any time.

3.3.6 External Realization with Buckets

In order to implement Sibeyn and Meyer’s algorithm, we need one adjacency list for each node. We cannot
keep all edges in internal memory at the same time, so we have to consider a reasonable disposition of the
data in external memory to obtain an efficient implementation. We read only from the list of the last node,
but the relabeled edges are written to arbitrary nodes (but the last). Of course we can easily read the edges of
the last node blockwise, but it is difficult to write edges blockwise because we cannot afford a write buffer1

for each node. To solve this problem, we distribute the edges to several buckets, so that we can afford a write
buffer for each bucket: we haveb buckets and upper boundsu0 < u1 < u2 < . . . < ub, u0 = 0, ub ≥ n,

1In order to save I/O operations, we must not write the apartly incoming edges immediately. Rather we gather the edges in write
buffers until the disk access is worthwhile.

5

so that bucketi ∈ {1, . . . , b} contains the edges of the nodes with the identifiers fromui−1 + 1 to ui in an
arbitrary sequence. (According to the considerations of Section3.3.1, ”the edges of one node” means only
the edges that lead to nodes with lower identifiers.)

The buckets can be used directly to write relabeled edges because we can add an edge to the appropriate
bucket without worrying about assigning it to the exact node. Nevertheless, we have to worry about the
exact node when we want to read the edges of the currently last node. Therefore, we read the complete last
external bucketi at a single blow and distribute the edges to internal buckets so that one internal bucket
contains all edges of one node. Then the edges of the nodesui down toui−1 + 1 can be processed before
the next external bucketi− 1 is loaded.

The first external bucket contains the edges of the nodes that fit in internal memory, i.e.,u1 = n′. So,
when the second external bucket has been processed, the node reduction is completed and the first bucket
contains the reduced graph and can be used as input for Kruskal’s algorithm.

Figure3.1 represents the two layers of data and the processing of the edges during the node reduction
phase.

3.3.7 External Realization with a Priority Queue

Alternatively, one external priority queue [San00] can be used instead of several external and internal
buckets; in this case only one external bucket is needed in order to store the edges of the firstn′ nodes,
which will be processed by Kruskal’s algorithm. The shortest edge incident to the last node is on top of
the queue, followed at first by the other edges of the last node and then by the shortest edge incident to
the second last node and so on. The elements in the queue are quintuples(u, v, c, e1, e2), whereu is the
source,v the target,c the weight ande1, e2 the original endpoints. Hence, the algorithm can be restated in
the following way:

let π bea random permutation over{1, . . . , n}
foreach (u, v, c) ∈ E do push((π(u), π(v), c, u, v));

s := −1;
while not pqueue.empty()do

(u, v, c, e1, e2) := pqueue.pop();
if u 6= s then

(s, t) := (u, v);
add(e1, e2, c) to T ;

else
push((t, v, c, e1, e2));

procedurepush((u, v, c, e1, e2))
if u 6= v then

if max(u, v) ≤ n′ then bucket.push((u, v, c, e1, e2))
elsepqueue.push((max(u, v),min(u, v), c, e1, e2));

The main advantage of using an external priority queue is the scalability: we expect good results for
any kind of graphs, even for degenerated ones, for instance, graphs with a small average vertex degree
containing some nodes with a very high degree. However, the realization with several buckets (3.3.6) will
be faster in most cases, but can get into trouble if it has to deal with such degenerated graphs.

6

..
.

(u
,v

,c
)

(u
,v

,c
,e

1
,e

2
)

ed
ge

s
of

 n
od

es
1
,.

..
,u

[1
]

ed
ge

s
of

 n
od

es
u

[1
]+

1
,.

..
,u

[2
]

ed
ge

s
of

 n
od

es
u

[b
-1

]+
1
,.

..
,u

[b
]

..
.

ed
ge

s
of

 n
od

e
u

[b
-1

]+
1

ed
ge

s
of

 n
od

e
u

[b
]-

1
ed

ge
s

of
 n

od
e

u
[b

]
..

.

ex
te

rn
al

b
u

ck
et

s

in
te

rn
al

b
u

ck
et

s

in
p
u

t
gr

ap
h

(f
ir

st
 e

xt
.

b
u

ck
et

=
n

od
es

 t
h

at
 f

it
 i
n

in

te
rn

al
 m

em
or

y)

re
ad

 i
n

p
u

t
an

d
d
is

tr
ib

u
te

 e
d
ge

s
to

 e
xt

er
n

al
 b

u
ck

et
s

(u
,v

,c
,u

,v
)

p
ar

t
of

 t
h

e
re

su
lt

in
g

M
S

T

(u
,v

,c
)

re
ad

 c
u

rr
en

tl
y

la
st

ex

te
rn

al
 b

u
ck

et
 a

n
d

d
is

tr
ib

u
te

 e
d
ge

s
to

 i
n

te
rn

al
 b

u
ck

et
s

d
et

er
m

in
e

sh
or

te
st

 e
d
ge

an
d
 r

el
ab

el
al

l
ed

ge
s

(v
,c

,e
1
,e

2
)

(e
1
,e

2
,c

)

re
d
u

ce
d

gr
ap

h

Figure 3.1: Sibeyn and Meyer’s algorithm — external realization

7

Chapter 4

Implementation

4.1 <stxxl> Library

The implementation uses the<stxxl> library, which is developed at the Max-Planck-Institute for Com-
puter Science. “The core of<stxxl> is an implementation of the C++ standard template library STL for
external memory (out-of-core) computations, i.e.,<stxxl> implements containers and algorithms that
can process huge volumes of data that only fit on disks. While the compatibility to the STL supports ease
of use and compatibility with existing applications, another design priority is high performance [...]: trans-
parent support of multiple disks, variable block lengths, overlapping of I/O and computation, prevention of
OS file buffering overhead.” [Dem03]

4.2 Data Structures

The basic data structure is the classEdge that represents an edge consisting of two endpoints
(called source and target) and theweight . Furthermore, we need a classRelabeledEdge
that is a subclass ofEdge and additionally contains theoriginal source and theoriginal
target . Sometimes it is not necessary to store the source vertex because if we look at
the adjacency list of one particular vertex, the source vertex is known implicitly. In this
case we use a classRelabeledEdgeWithoutSource in order to reduce memory usage.
A RelabeledEdgeWithoutSource consists of target , weight , original source and
original target . (In order to avoid multiple inheritanceRelabeledEdgeWithoutSource is
not a superclass ofRelabeledEdge .) A superclassEdgeWithoutSource encapsulates the common
components ofEdge andRelabeledEdgeWithoutSource .

The classEdgeVector extends thestxxl::vector -class and can be used to save a sequence of
edges. AsEdgeVector is a template class, it can be used for both edges and relabeled edges. The main
feature ofstxxl::vector is the storage of the data in external memory while some blocks of data stay
in internal memory so that reading and writing is always done blockwise. As the subclassEdgeVector
should be able to represent a graph, it additionally stores the number of nodes of the graph. Furthermore,
there is a methodsortByWeight() that usesstxxl::ksort [DS03] in order to sort the edges by
weight.

Finally, the classMST represents a (part of a) minimum spanning tree and mainly consists of
an EdgeVector<Edge> . There are several methods toadd an Edge, a RelabeledEdge or a
RelabeledEdgeWithoutSource to the MST. Polymorphism is avoided due to efficiency reasons.

Figure4.1summarizes these data structures.

8

EdgeWithoutSource

+target(): NodeID
+weight(): EdgeWeight

Edge

+source(): NodeID
+swap()
+isSelfLoop(): bool

RelabeledEdgeWithoutSource

+originalSource(): NodeID
+originalTarget(): NodeID

RelabeledEdge

+originalSource(): NodeID
+originalTarget(): NodeID

EdgeVector<Edge>

+noOfEdges(): EdgeCount
+noOfNodes(): NodeCount
+sortByWeight()

EdgeVector<RelabeledEdge>

+noOfEdges(): EdgeCount
+noOfNodes(): NodeCount
+sortByWeight()

MST

+noOfEdges(): EdgeCount
+totalWeight(): EdgeWeightBig
+add(edge:Edge&)
+add(edge:RelabeledEdge&)
+add(edge:RelabeledEdgeWithoutSource&)

stxxl::vector

 *

 1

 *

 1

 1

 1

Figure 4.1: UML class diagram [BRJ99] — data structures

4.3 Base Case

We can apply the base case when the union-find data structure of all (remaining) nodes fit in internal mem-
ory. For this case the classKruskal provides data structures and methods to apply a semi-external version
of Kruskal’s algorithm. The constructor is given a reference to a graph represented by anEdgeVector
and a reference to theMST-object that stores the resulting MST. SinceKruskal is a template class, it can
deal with both anEdgeVector<Edge> and anEdgeVector<RelabeledEdge> .

First the edges are sorted (using thesortByWeight() -method ofEdgeVector) and then the edges
are scanned and appropriate union-find operations are performed.

Figure4.2 is an overview of the interface of theKruskal -class.

4.4 Node Reduction with Buckets

4.4.1 External Buckets

We have to be able to add edges to an external bucket and read all edges of the currently last bucket, so the
functionality of a stack is sufficient. Therefore, we use astxxl::stack for each external bucket. The

9

EdgeVector<Edge> EdgeVector<RelabeledEdge>

MST

+noOfEdges(): EdgeCount
+totalWeight(): EdgeWeightBig
+add(edge:Edge&)
+add(edge:RelabeledEdge&)
+add(edge:RelabeledEdgeWithoutSource&)

 1

 1

Kruskal<Edge>

+Kruskal(graph:EdgeVector<Edge>&,result:MST&)
-initUnionFind()
-computeMST()
-find(node:NodeID): NodeID
-unite(node1:NodeID,node2:NodeID): bool

Kruskal<RelabeledEdge>

+Kruskal(graph:EdgeVector<RelabeledEdge>&,result:MST&)
-initUnionFind()
-computeMST()
-find(node:NodeID): NodeID
-unite(node1:NodeID,node2:NodeID): bool

 result
 1

 1

 graph
 1

 1

 result
 1

 1

 graph
 1

 1

Figure 4.2: UML class diagram — Kruskal’s algorithm

first bucket is an exception as we want to use it as input for Kruskal’s algorithm that needs a more flexible
access since it has to sort the edges. Hence, we use anEdgeVector as the first bucket.

The size of the first bucket is the number of nodes that fit in internal memory. The size of the other
buckets should be not too small (otherwise too many buckets are needed and the buffers of the buckets
exceed the memory limit) and not too large (otherwise the edges of one external bucket do not fit in internal
memory). It is convenient to choose the same size for all (but the first) buckets as the computation of the
appropriate bucket identifier for a given node is simplified. At first sight this seems not to be the best choice
since the buckets with lower IDs probably contain much more edges than the buckets with higher IDs if all
buckets have the same size (cp.3.3.4). But, on the other hand, when the buckets with the higher IDs have
been processed, their buffers are not needed any more, and so the released memory can be used to store
more edges in internal memory.

4.4.2 Internal Buckets

The internal buckets have to be very flexible as for each node the number of edges can be very different
and is not known in advance. Furthermore, the internal buckets are reused several times. For instance, the
last internal bucket contains the edges ofub, then the edges ofub−1 and finally the edges ofu1. When it
has adapted its size toub, it is possible that this size is entirely improper forub−1.

The usage of one std::vector for each internal bucket would lead to a waste of either memory or time:
if the vectors are not reinitialized after the processing of each external bucket, the total capacity increases
continuously so that it exceeds the total number of edges by a high factor. On the other hand, the reinitial-
ization takes time.

To avoid these problems, we use aCommonPoolOfBlocks , which is shared by all internal buckets.
The CommonPoolOfBlocks manages a linked list of free blocks. Each block has a small constant
capacity to store edges. By invoking therequest -method a internal bucket can get a pointer to a free

10

block, which is removed from the free list and can be used exclusively by the requesting internal bucket
to store its edges. An internal bucket can give a block back to the pool by calling therelease -method.
Due to these measures the unused capacity is at any time less than the number of internal bucketstimesthe
capacity of one block because for each internal bucket less than one whole block is unused.

Basically, we need to add edges to internal buckets (when the edges of an external bucket are dis-
tributed to the internal buckets) and remove them later (in order to relabel them). The functionality of
a stack that uses theCommonPoolOfBlocks is encapsulated by the classSparingStack . In our
case we additionally need a methoddetermineMinEdge in order to iterate through all edges to find
the shortest one. This method is provided by the subclassREWSSparingStack that is specialized in
storingRelabeledEdgeWithoutSource -objects. Thus, each internal bucket is represented by one
REWSSparingStack .

A SparingStack consists of at least one block that does not belong to theCommonPoolOfBlocks
and therefore is never released. This saves time because the first block does not have to be requested, and
usually an internal bucket is not empty so that at least one block is needed.

Figure4.3outlines the data structures that are used to implement the internal buckets.

CommonPoolOfBlocks

+request(): Block*
+release(block:Block*)
+increaseReserveMemory(newMemory:int)

value_type:typename

CommonPoolOfBlocks<value_type>::Block

+push(element:value_type&)
+top(): value_type&
+pop()
+clear()
+empty(): bool
+full(): bool
+size(): int
+operator[](index:int): value_type&
+setPrevBlock(prevBlock:Block*)
+prevBlock(): Block*

value_type:typename

SparingStack

+setPool(pool:CommonPoolOfBlocks<value_type>*)
+empty(): bool
+push(element:value_type&)
+top(): value_type&
+pop()
+size(): int

value_type:typename

REWS_SparingStack

+determineMinEdge(result:MST&): NodeID

 *

 1

 uses
 *

 1

 1..*

 1

<RelabeledEdgeWithoutSource>

Figure 4.3: UML class diagram — internal buckets

11

4.4.3 Interface

The classBuckets provides an interface for the node reduction. The constructor is given (among others)
a reference to a graph represented by anEdgeVector and a reference to theMST-object that stores the
resulting MST. The classBuckets aggregates both the external and internal buckets, and it performs the
node reduction. After the node reduction has been completed, the methodgetIntMemBucket returns a
pointer to the first external bucket that contains the reduced graph (= the nodes that fit in internal memory).
Figure4.4represents the classBuckets .

Buckets

+Buckets(graph:EdgeVector<Edge>*,result:MST&,...)
+getIntMemBucket(): EdgeVector<RelabeledEdge>*

EdgeVector<Edge>

MST

REWS_SparingStack

EdgeVector<RelabeledEdge>

stxxl::stack

 graph
 1

 1

 internal buckets
 *

 1

 result
 1

 1

 first external bucket
 1

 1

 external buckets
 *

 1

Figure 4.4: UML class diagram — node reduction with buckets

4.5 Node Reduction with a Priority Queue

We use anEdgeVector as the first external bucket (cp.4.4.1) and astxxl::priority queue . An
implementation of the node reduction algorithm presented in Section3.3.7is straightforward with the help
of these data structures.

The interface of thePQueue class, which performs the node reduction and aggregates for this purpose
both the first external bucket and the priority queue, is virtually identical with the interface of theBuckets
class (4.4.3). Therefore, the following sections and figures apply to both theBuckets and thePQueue
implementation, although they refer only to the first one (to simplify matters).

4.6 Main Program

The sequence of the main program is quite simple:

1. import or generate the graph

2. perform the node reduction

3. use the reduced graph as input for Kruskal’s algorithm

Figure4.5represents this sequence by a diagram. The second step is skipped if the input graph is so small
that it can be processed by Kruskal’s algorithm immediately.

12

main

new(firstExtBucket,result)

new()

import / generate new()

graph

new(graph,result,...)

new()

add(edge)

*[node reduction]

getIntMemBucket()

firstExtBucket

add(edge)

*[Kruskal's algorithm]

buckets:Buckets

kruskal:Kruskal

import/generate graph

graph
:EdgeVector<Edge>

firstExtBucket
:EdgeVector
 <RelabeledEdge>

result:MST

Figure 4.5: UML sequence diagram

4.7 Randomization

The randomization of the node indices is essential for the expected running time (cp.3.3.4). Hence, we
apply a (pseudo-)random permutation on the node indices before the nodes are distributed to the external
buckets. As not all node indices fit in internal memory at the same time, we cannot use a standard procedure
that swaps random elements. Instead, we apply a bijection on each node index, so each edge can be
randomized independently (without looking at other edges, just by a relatively simple computation). Of
course we need a special bijection that leads to a (pseudo-)random permutation.

We use a variant of aFeistel permutation[NR99]. Let x be the node index that should be randomized.
We splitx into two partsa := x div r andb := x modr, wherer := d

√
ne. During one iterationi we

perform the following operation:a′ := b, b′ := (a + fi(b)) modr, wherefi(b) ∈ {0, . . . , r − 1} is a
random number taken from a table that has been computed once. This step is executed twice (we geta′′

andb′′). Finally,a′′ andb′′ are recombined to obtain the randomized node indexx′ = a′′ · r + b′′.

Originally, this is a bijection over{0, . . . , r2 − 1}, but we want a bijection over{0, . . . , n− 1}1, so we
repeat the application of the bijection, if necessary, untilx′ ∈ {0, . . . , n− 1}.

1In Section3.3 we use node indices from 1 ton for the abstract descriptions. However, node indices from 0 ton − 1 are more
convenient for the implementation.

13

4.8 Removal of Parallel Edges

By relabeling it is possible that parallel edges are created, i.e., edges that lead from the same source vertex to
the same target vertex. As a minimum spanning tree contains at the most the shortest one of several parallel
edges, the redundant duplicates can and should be ignored for further processing. Hence, it is reasonable
to remove these duplicates. As the removal of parallel edges is not very expensive, the disadvantage of
looking for them in graphs that do not have many of them is small; but, on the other hand, the advantage
for special graphs, grid graphs for example, is clearly noticeable.

The removal of duplicates is integrated in the relabeling step. Instead of adding the relabeled edges
of the last node directly to the appropriate external or internal bucket, they are first added to a hash map
by calling theinsert -method of theDuplicatesRemover -class, which aggregates the hash map. If
an edge with the same source and the same target vertex is already stored in the hash map, it is replaced
with the new edge if the new edge is shorter, otherwise the new edge is discarded. If the capacity of the
hash map is exhausted, further edges are written to the appropriate external or internal bucket directly; this
limits the waste of time when there are many different edges.

When all edges of the last node have been inserted in the hash map, it has to be cleared and the edges
have to be written to the appropriate bucket. In order to be able to clear a hash map fast (especially if it
contains only few elements), the inserted elements are additionally stored in an array without gaps. Each
entry in the hash map consists of the edge and the index in the array where the edge is additionally stored,
so the element in the array can be updated in constant time when the corresponding element in the hash
map is replaced by a shorter edge. Due to this data structure the hash map can be cleared by iterating
through the array (instead of the whole map) and deleting the elements in the map selectively.

4.9 Ideas for Further Improvements

There are several possible improvements that have not been implemented (yet).

• Pipelining. Some I/Os could be saved, if the sort and the scan part of Kruskal’s algorithm were
combined by a pipeline. Instead of writing the first sorted elements back and reading them later, we
could process the sorted elements immediately. Furthermore, we could join the node reduction and
the sorting: instead of writing all edges in an unsorted sequence to the first external bucket, we could
gather a certain amount of edges in order to build sorted runs. Then we only have to merge these
sorted runs. Planned enhancements of the<stxxl> library will make such improvements possible.

• Exception handling in the buckets implementation.Currently, the buckets implementation cannot
deal with every imaginable graph. As mentioned in Section3.3.7, we get into trouble if the graph
has a small average vertex degree, but contains some nodes with a very a high degree. In this case
reading the external bucket that contains these exceptional nodes could fail because not all edges of
this external bucket fit in the internal buckets. In order to handle this exceptional cases, we could
switch temporarily to the priority queue implementation when we realize that the current external
bucket would not fit in internal memory.
This improvement has not been implemented since such degenerated graphs are quite rare and, if
necessary, the priority queue implementation could be used right from the start.

• Adaptive bucket sizes.In our buckets implementation all external buckets (but the first) have the same
size. As described in Section4.4.1, this has some advantages. However, it could be worthwhile to
try using adaptive bucket sizes, i.e., the buckets with lower IDs contain the edges of less nodes as the
average vertex degree increases from the last to the first bucket.

• Intermediate buckets.When an external bucket is read and when edges are relabeled, they are dis-
tributed to random internal buckets. This leads to many cache misses. In order to reduce the number
of cache misses, it could be reasonable to install some intermediate buckets between the existing ex-
ternal and internal buckets, so the concept of two layers of data (introduced in Section3.3.6) would
be extended to three layers and memory accesses would be no longer distributed over the whole
internal memory.

14

Chapter 5

Evaluation

5.1 Test Data

As there is a lack of real-world data, we use generated graphs to measure the runtime performance. Three
different graph families are examined [MS94]1.

1. random graphs with a given number of vertices and a given number of edges: for each edge a random
weight and two random endpoints are selected,

2. grid graphs withnodesX ·nodesY vertices: each vertex is connected with its four neighbours (except
the marginal nodes, which are connected with three resp. two neighbours), the edges have random
weights,

3. geometric graphs: the given number of vertices is placed in a square, each vertex is connected with
the given number of nearest neighbours, the distance between two nodes is the square of the Eu-
clidean distance (the extraction of the root is insignificant in respect of the sequence of the algorithm
and would slow down the graph generation unnecessarily), parallel edges are removed.

Apart from the grid graphs it is possible that the generated graphs are not connected. Especially (very)
sparse random or geometric graphs, which have been generated that way, are almost never connected. We
do not take any measures to remedy this unwanted state because, in the main, the sequence of the program
is independent of the connectivity of the graph: if a connected graph is given, a minimum spanningtree
will be determined; if an unconnected graph is given, a minimum spanningforestwill be found. Actually,
the only difference is the chance of an earlier abort ifn − 1 edges have been added to the resulting MST:
if we deal with an unconnected graph, we will never be able to fulfill this abort condition, so we will have
to scan through all edges. Hence, the fact that we do not make the generated graphs connected in any case
leads at the most to a slight slowdown.

5.2 Test Environment and Settings

The evaluation is done on a machine with two 2GHz Intel Xeon processors, 1 GB RAM and four disks (80
GB each) with a total I/O bandwidth of up to 180 MB/s [DS03]. Debian Linux with kernel version 2.4.20
is used as operating system. The chosen filesystem is XFS and the swap file has been disabled.

Unless otherwise specified, we use the buckets implementation with the following parameters:

• 4 hard disks (and appropriate parameters to take advantage of the parallelism),

1Moret and Shapiro additionally use graphs that represent the worst case for Prim’s resp. Kruskal’s algorithm. As our imple-
mentation has nothing to do with Prim’s algorithm, we could not expect informative results if we evaluated the former. We do not
explicitly use the latter, either, because, in contrast to Moret and Shapiro, we also process unconnected graphs so that the worst case
for Kruskal’s algorithm (namely that all edges have to be sorted and scanned) occurs anyway.

15

• 2 MB block size forstxxl::vectors (particularly for the first external bucket) and 512 KB
block size forstxxl::stacks (i.e., for all other external buckets),

• the first external bucket contains the edges of the first 160,000,000 nodes (the union find data struc-
ture of these nodes fits in internal memory), the other external buckets contain the edges of 1,800,000
nodes,

• consequently, there are 1,800,000 internal buckets (each of them possesses one block that can store
up to 8 edges2), initially the common pool, which can be used by all internal buckets, consists of
1,500,000 blocks (8 edges each),

• 650 MB of internal memory are used for sorting,

• randomization and removing of parallel edges are switched on.

5.3 Test Runs and Results

5.3.1 Main Results

Table5.1 represents the main results, namely the results of test runs with the three graph families, several
sizes and densities. Ifn ≤ 160,000,000, we are involved with a semi-external test case, otherwise with an
external one. The number of processed edgesp and the number of removed parallel edges (duplicates)d
refer to the node reduction phase, so these columns are blank in semi-external cases.

Most of these test runs were done with the above mentioned settings, only the external bucket size was
decreased for test cases withm ≈ 4 · n resp. m ≈ 8 · n3 so that all edges of one external bucket fit in
internal memory in any case.4

The results of the semi-external test runs do not show wide differences. It is not possible to distinguish
between the different graph families. The more edges are processed the more time per edge is spent, but this
complies with the expected behaviour as the time complexity of Kruskal’s algorithm is inO(m lnm). For
example, if you compare the random graph with10·106 nodes and80·106 edges with the random graph with
160 ·106 nodes and1, 280 ·106 edges, the time per edge differs (1.77µs to 2.05µs), butt/(m lnm) ≈ 97ns
in both cases. The denser the graph the less time per edge is taken. A denser graph with the same number
of edges consists of less nodes, so a MST of a denser graph consists of less edges. Hence, there are more
find operations with negative results (i.e., both nodes already belong to the same set) so that less union
operations are needed and the height of the trees becomes very small due to path compression. Therefore,
less time is needed when we deal with denser graphs.

Obviously, the external test runs are slower than the semi-external ones, but fortunately the differences
keep within reasonable limits. When we look at grid resp. geometric graphs, the differences even decrease
when the graph size increases. Mainly, this effect is due to the removal of parallel edges. The more edges
in a grid or geometric graph the greater the rate of removed edges (cp. columnd/m). Hence, the number
of edges that have to be processed by Kruskal’s algorithm is kept small. For example,5.6 · 108 edges of
a grid graph with640 · 106 nodes survive the node reduction, and6.3 · 108 edges of a graph that is twice
this size. Furthermore, the removal of duplicates is one of two reasons why the number of processed edges
is distinctly less than the expected number of processed edges (cp. columnp/E(p)) when we deal with
large instances. The other reason is the fact that the analysis of the time complexity (Section3.3.4) is rather
cautious. For instance, it is not regarded that for each node at least one edge, which is added to the MST,
is eliminated. Unfortunately, only the second reason applies to random graphs as the removal of parallel
edges is not effective. (There are some multiple edges, but distinctly less than 1%.) Hence, the number of

2The more edges in one block the greater the extent of unused capacity (cp.4.4.2) and the smaller the temporal overhead of
operations on linked lists of blocks — and vice versa. Hence, 8 edges is a compromise.

3Originally, we wanted to evaluate test cases withm = 2 · n, m = 4 · n andm = 8 · n, but we had to restrict ourselves to
approximate values as the average vertex degree of a grid graph is slightly less than four and the average vertex degree of a geometric
graph depends on the given number of nearest neighbours and cannot be set to an exact value.

4Furthermore, the size of the first external bucket was reduced to 150,000,000 for large geometric graphs due to a slight misfeature
of the memory management caused by the expensive geometric graph generator.

16

type n/106 m/106 t[s] t/m[µs] p/106 p/E(p) d/m

grid 40 80 177 2.21
grid 80 160 362 2.27
grid 160 320 738 2.31
grid 320 640 2 535 3.96 750 85 % 4 %
grid 640 1 280 4 712 3.68 2 492 70 % 13 %
grid 1 280 2 560 9 056 3.54 6 167 58 % 22 %

random 40 80 185 2.32
random 80 160 388 2.42
random 160 320 813 2.54
random 320 640 2 773 4.33 766 86 % 0 %
random 640 1 280 6 098 4.76 2 752 78 % 0 %
random 1 280 2 560 14 202 5.55 7 676 72 % 0 %
random 20 80 155 1.94
random 40 160 318 1.99
random 80 320 676 2.11
random 160 640 1 427 2.23
random 320 1 280 5 889 4.60 1 651 93 % 0 %
random 640 2 560 14 248 5.57 6 284 89 % 0 %
random 10 80 142 1.77
random 20 160 286 1.79
random 40 320 591 1.85
random 80 640 1 242 1.94
random 160 1 280 2 627 2.05
random 320 2 560 12 370 4.83 3 426 97 % 0 %

geometric 40 75 183 2.45
geometric 80 149 377 2.53
geometric 160 298 787 2.64
geometric 320 596 2 175 3.65 644 78 % 7 %
geometric 640 1 190 3 797 3.18 1 949 59 % 13 %
geometric 1 280 2 390 7 278 3.05 4 575 45 % 15 %
geometric 20 71 148 2.09
geometric 40 141 300 2.13
geometric 80 282 627 2.22
geometric 160 564 1 333 2.36
geometric 320 1 130 4 126 3.66 1 275 82 % 18 %
geometric 640 2 260 7 004 3.10 3 975 61 % 34 %
geometric 10 68 124 1.84
geometric 20 135 246 1.82
geometric 40 270 511 1.89
geometric 80 540 1 067 1.98
geometric 160 1 080 2 209 2.04
geometric 320 2 160 7 549 3.49 2 650 81 % 30 %

n nodes,m edges,t elapsed time,p processed edges,E(p) expected value ofp according
to 3.3.4, d duplicates (parallel edges) removed

Table 5.1: (Semi-)External test cases

17

processed edges is less than the expected number, but greater than the corresponding number at test runs
with grid resp. geometric graphs. Therefore, the time per edge increases when we deal with larger random
graphs. This is the “normal” behaviour as the time complexity of the node reduction algorithm is not in
O(m). If you regard the time per processed edge, you can find out that this quantity even decreases when
the graph size increases.

At first sight it is surprising that test runs with denser graphs are partly as slow as test runs with sparser
graphs. For instance, the time per edge for a random graph with2, 560 · 106 edges andm = 2 · n and for
a random graph with the same number of edges, butm = 4 · n, is almost identical (about 5.5µs each). As
the number of processed edges depends not only onm, but also onn, we would have expected that the
test run withm = 4 · n is faster. However, the sparser graphs benefit from another fact: due to the larger
number of nodes the node reduction phase actually takes a longer time (10,571s instead of 9,177s, for the
above mentioned example), but, on the other hand, more edges are eliminated because for each node at
least the shortest edge is removed, so there are less edges that have to be processed by Kruskal’s algorithm
(about1.5 · 109 instead of2.1 · 109). Hence, Kruskal’s algorithm is faster (3,631s instead of 5,071s) and
compensates for the slower node reduction phase.

5.3.2 Comparison with Internal Implementations

In order to be able to judge the performance of our implementation, we need comparison values. Therefore,
we fall back on internal implementations of Kruskal’s and of Prim’s algorithm developed at the Max-
Planck-Institute for Computer Science by Irit Katriel. We used random graphs generated by Irit’s program
and grid and geometric graphs generated by our program. As the implementation of Prim’s algorithm
requires more memory, some instances were processed only by Kruskal’a algorithm. Table5.2 contains
the results of the internal test runs.

Kruskal Prim
type n/106 m/106 t[s] t/m[µs] t[s] t/m[µs]
grid 2.5 5.0 7.5 1.50 3.8 0.75
grid 5.0 10.0 15.2 1.52 8.2 0.82

random 2.5 5.0 6.5 1.30 10.0 1.99
random 5.0 10.0 13.5 1.35 22.1 2.21
random 10.0 20.0 28.2 1.41
random 1.3 5.0 5.3 1.07 6.1 1.22
random 2.5 10.0 10.9 1.09 12.9 1.29
random 5.0 20.0 22.4 1.12
random 0.6 5.0 4.7 0.94 3.7 0.73
random 1.3 10.0 9.6 0.96 7.5 0.75
random 2.5 20.0 19.9 1.00

geometric 2.5 4.7 7.3 1.56 5.6 1.19
geometric 5.0 9.3 14.5 1.56 13.1 1.41
geometric 1.3 4.4 6.3 1.42 2.9 0.66
geometric 2.5 8.8 12.6 1.43 6.4 0.73
geometric 0.6 4.2 5.3 1.26 1.7 0.41
geometric 1.3 8.4 10.8 1.27 3.6 0.43

Table 5.2: Internal test cases

In the main, both implementations show the expected behaviour. Kruskal’s algorithm is quite inde-
pendent of the graph type. When denser graphs are processed, Kruskal’s algorithm gets faster due to the
same reasons that applied to the semi-external test cases described in Section5.3.1. One basic feature of
Prim’s algorithm is the fact that the time per edge decreases when the density increases. This feature is
confirmed by our results. Furthermore, Prim’s algorithm is more efficient when grid or geometric graphs
are processed.

18

In Table5.3, we compare external test runs with internal ones. For each graph type and for each density,
the last entry in Table5.1is compared with the last entry in Table5.2. The time per edge of the external test
case is divided by the time per edge of the corresponding internal test case for both algorithms, Kruskal’s
and Prim’s.

(t/m)ext : (t/m)int
type density Kruskal Prim

grid m ≈ 2 · n 2.3 4.3
random m ≈ 2 · n 3.9 2.5
random m ≈ 4 · n 5.0 4.3
random m ≈ 8 · n 4.8 6.4
geometric m ≈ 2 · n 2.0 2.2
geometric m ≈ 4 · n 2.2 4.2
geometric m ≈ 8 · n 2.7 8.1

Table 5.3: Comparison between external and internal test cases

With regard to the internal implementation of Kruskal’s algorithm, our external implementation is
between two and five times slower. When we compare our implementation with Prim’s algorithm, the
factor ranges between 2.2 and 8.1. When we make the analogous comparison between the semi-external
version of Kruskal’s algorithm and the internal one, we obtain a factor between 1.5 and 2.5 However, we
have to consider that these comparisons aredisadvantageous to our implementation as we cannot expect
that the expense grows only linearly.

Figure 5.1 illustrates the results of internal, semi-external and external test runs withm ≈ 2 · n.
Analogically, the Figures5.2and5.3show the results of the test runs withm ≈ 4 · n resp.m ≈ 8 · n. To
keep the figures easy to survey, we omit the internal test runs with grid and geometric graphs.

5.3.3 Randomization and Removal of Parallel Edges

As we wanted to evaluate the benefit of the removal of parallel edges, we reran the external test cases of
grid graphs withdeactivatedDuplicatesRemover (cp. 4.8). Table5.4 shows both the results with
activated and with deactivatedDuplicatesRemover .

parallel edges n/106 m/106 t[s] t/m[µs] p/106 p/E(p) d/m

removed 320 640 2 535 3.96 750 85 % 4 %
removed 640 1 280 4 712 3.68 2 492 70 % 13 %
removed 1 280 2 560 9 056 3.54 6 167 58 % 22 %

not removed 320 640 2 539 3.97 760 86 %
not removed 640 1 280 5 006 3.91 2 642 74 %
not removed 1 280 2 560 10 171 3.97 6 969 65 %

Table 5.4: Grid graphs — removal of parallel edges

From these results, we can conclude that the removal of parallel edges becomes worthwhile when the
graph size increases. For instance, theDuplicatesRemover eliminates 22% (≈ 5.7 · 108) of all edges
from a grid graph with1.28·109 nodes and about2.56·109 edges. When these edges are not removed, most
of them are processed more than once, so the number of processed edges even increases from6.2 · 109 to
7.0·109. Hence, the test run with activatedDuplicatesRemover is more than 10% faster. Furthermore,
less internal memory is allocated, so the external bucket size could be increased.

5Both the internal and the semi-external algorithm have a number of opportunities for further tuning. Currently, the external
sorter benefits from the fact that only integer keys are used, while the internal sorter is comparison based. Hence, bucket sort could
accelerate the internal sorter. On the other hand, the external sorter is not optimized for small elements. Furthermore, pipelining (cp.
4.9) has not been implemented, yet. But none of these measures is likely to yield more than a factor of 2.

19

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

grid

KruskalandPrim denote the internal test runs with random graphs,random, geometricand
grid label the (semi-)external test runs with the corresponding graph type.

Figure 5.1:m ≈ 2 · n

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

Figure 5.2:m ≈ 4 · n

20

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

Figure 5.3:m ≈ 8 · n

The randomization of a random graph is redundant as the node indices are uniformly distributed any-
way. Furthermore, the removal of duplicates is not worthwhile since a random graph contains only few
parallel edges. Hence, we wanted to find out the extent of the overhead. Table5.5represents the results of
two test runs with a random graph, one with randomization and removal of parallel edges and one without
these measures.

parallel edges randomization n/106 m/106 t[s] t/m[µs] p/106 p/E(p) d

removed activated 1 280 2 560 14 202 5.55 7 676 72 % 555
not removed deactivated 1 280 2 560 12 465 4.87 7 675 72 %

Table 5.5: Random graph — randomization and removal of parallel edges

Firstly, these results confirm our conjecture that the randomization of a random graph is superfluous.
The number of processed edges is almost identical. Secondly, it is obvious that the removal of duplicates is
not worthwhile because only 555 (≈ 0.00002%) parallel edges are eliminated. Finally, the test run without
randomization and withoutDuplicatesRemover is about 12% faster. As both measures do not speed
up the processing, this difference exactly reflects the expense of the randomization and the removal of
parallel edges.

5.3.4 Buckets vs. Priority Queue

In order to compare both implementations, we selected three representative instances and applied both
versions one after the other. Table5.6shows the different execution times.

The results demonstrate that currently the buckets implementation needs less than half the time of the
priority queue implementation. There are two reasons for this. Firstly, the buckets implementation is
optimized for the MST problem, while the priority queue of the<stxxl> library is a very general data
structure. Secondly, the priority queue is not fully developed yet.

21

implementation type n/106 m/106 t[s] t/m[µs]
buckets grid 320 640 2 535 3.96
priority queue grid 320 640 6 156 9.62
buckets random 320 640 2 773 4.33
priority queue random 320 640 6 013 9.40
buckets random 1 280 2 560 14 202 5.55
priority queue random 1 280 2 560 54 497 21.29

Table 5.6: Buckets vs. priority queue

5.3.5 Large Instances

To sound the limits of the program, we processed grid graphs with231 and with232 nodes. As the number
of external buckets increased, the block size forstxxl::stacks had to be reduced.6 Table5.7 shows
the external test cases of grid graphs including the above mentioned large instances.

block size n/106 m/106 t[s] t/m[µs] p/106 p/E(p) d/m

512 KB 320 640 2 535 3.96 750 85 % 4 %
512 KB 640 1 280 4 712 3.68 2 492 70 % 13 %
512 KB 1 280 2 560 9 056 3.54 6 167 58 % 22 %
256 KB 2 150 4 290 15 803 3.68 11 230 50 % 27 %
128 KB 4 290 8 590 31 081 3.62 26 260 46 % 29 %

Table 5.7: Grid graphs — large instances

Although the block size is halved twice, the time per edge is almost constant and does not increase when
very large graphs are processed. The reduced block size is compensated by theDuplicatesRemover ,
which is very efficient for large instances. For example, the number of processed edges is less than half
the expected number if we regard the grid graph with232 nodes. This is achieved by removing 29% of all
edges.

6Furthermore, the sizes of the external buckets were adapted for the last test run so that they were particularly appropriate for a
large grid graph: the first external bucket contained the edges of 150,000,000 nodes (instead of 160,000,000) and all other external
buckets contained the edges of 2,500,000 nodes (instead of 1,800,000).

22

Acknowledgements

First of all, I like to thank my supervisor, Peter Sanders, for the numerous fertile discussions. His sugges-
tions and his optimism were very helpful.

Roman Dementiev always provided an up-to-date version of the<stxxl> -library and made sure that
the test environment worked. Furthermore, he enhanced the library according to my requirements and
supported my hunt for bugs (particularly memory leaks) with great patience.

Job Sibeyn kindly made his not yet published external memory MST algorithm available. Irit Katriel
provided internal implementations of Prim’s and of Kruskal’s algorithm so that I was able to do comparative
measurements.

23

Appendix A

Reference Manual

A.1 Hierarchical Index

A.1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Buckets< nodesPerBucket> . 25
CommonPoolOfBlocks< value type, elementsPerBlock, noOfBlocks> 29
CommonPoolOfBlocks< value type, elementsPerBlock, noOfBlocks>::Block 30
DuplicatesRemover< SuperContainer> . 31
EdgeWithoutSource .37

Edge .34
RelabeledEdge .48

RelabeledEdgeWithoutSource .49

GetWeight< EdgeType> . 39
Kruskal< EdgeType> . 39
MST .42
PQueue .43
Randomizer< Bijection> . 45
RandomizerFeistel .46
RandomizerLinearCongruence .47
result

EdgeVector< EdgeType, blockSize, noOfPages, pageSize> 36
SourceTargetWeightOrdering .51
SourceWeightOrdering< EdgeType> . 52
SparingStack< value type, elementsPerBlock, noOfBlocks> 53
SparingStack< RelabeledEdgeWithoutSource, elementsPerBlock, noOfBlocks> 53

REWSSparingStack< elementsPerBlock, noOfBlocks> 51

WeightOrdering< EdgeType> . 54

A.2 Compound Index

A.2.1 Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

24

Buckets< nodesPerBucket> (Represents an algorithm for reducing the number of nodes of a
graph (in order to compute a minimum spanning tree) and the required data structures)25

CommonPoolOfBlocks< value type, elementsPerBlock, noOfBlocks> (A CommonPoolOf-
Blocks manages blocks which can contain several elements of a specified valuetype) . 29

CommonPoolOfBlocks< value type, elementsPerBlock, noOfBlocks>::Block (A block which
can contain several elements) .30

DuplicatesRemover< SuperContainer> (A container which can be used as an ’intermediate
station’ in order to remove multiple edges) .31

Edge(Represents a directed and weighted edge) .34
EdgeVector< EdgeType, blockSize, noOfPages, pageSize> (Represents a weighted graph by a

list of Edges) .36
EdgeWithoutSource(Represents an edge without the source vertex)37
GetWeight< EdgeType> (Extracts the weight of an edge) .39
Kruskal< EdgeType> (Represents Kruskal’s algorithm for determining a Minimum Spanning

Tree of a weighted graph and the required union/find data structure)39
MST (Represents a Minimum Spanning Tree (MST) of a graph)42
PQueue(Represents an algorithm for reducing the number of nodes of a graph (in order to com-

pute a minimum spanning tree) and the required data structures)43
Randomizer< Bijection> (A bijection over{0,...,n-1} that can be used to randomize anEdgein

order to obtain a (pseudo-)random permutation) .45
RandomizerFeistel(A bijection that uses Feistel permutations)46
RandomizerLinearCongruence(A bijection that uses the linear congruential method)47
RelabeledEdge(Represents a relabeled edge) .48
RelabeledEdgeWithoutSource(Represents a relabeled edge without the source vertex)49
REWSSparingStack< elementsPerBlock, noOfBlocks> (A specializedSparingStackwhich

storesRelabeledEdgeWithoutSource-objects) . 51
SourceTargetWeightOrdering(A StrictWeakOrdering predicate which can be used to compare

two edges first by the source vertex, then - if the source vertices are equal - by the target
vertex and finally by weight) .51

SourceWeightOrdering< EdgeType> (A StrictWeakOrdering predicate which can be used to
compare two edges first by the source vertex, then - if the source vertices are equal - by
weight) .52

SparingStack< value type, elementsPerBlock, noOfBlocks> (A stack which stores its elements
in blocks which are managed by aCommonPoolOfBlocks) 53

WeightOrdering< EdgeType> (A StrictWeakOrdering predicate which can be used to compare
two edges by weight) .54

A.3 Class Documentation

A.3.1 Buckets< nodesPerBucket> Class Template Reference

Represents an algorithm for reducing the number of nodes of a graph (in order to compute a minimum
spanning tree) and the required data structures.

#include <buckets.h >

Public Types

• typedef intBucketID

25

Public Methods

• Buckets(EdgeVector< Edge> &graph,MST &result, BucketID noOfBuckets, NodeCount noOf-
NodesInIntMem)

Reduces the number of nodes of a graph (in order to compute a minimum spanning tree).

• InternalMemoryBucket∗ getIntMemBucket()

Returns a pointer to the first external bucket which contains the edges of the nodes which fit in internal
memory.

• void add(constRelabeledEdge&edge)

Adds the given edge to the appropriate external bucket or to the appropriate internal bucket if the edge
belongs to the external bucket which is processed at the moment.

Static Public Methods

• BucketIDnoOfExtBuckets(NodeCount noOfNodes, NodeCount noOfNodesInIntMem)

Computes the number of external buckets that are needed.

Private Types

• typedef stxxl::STACKGENERATOR< RelabeledEdge, stxxl::external, stxxl::growshrink2, DS-
EXT PAGE SIZE, DSEXT BLOCK SIZE>::resultEdgesOfSeveralNodes

The type of an external bucket which contains the edges of several nodes.

• typedef REWSSparingStack< DS INT EDGESPERBLOCK, DS INT NO OF BLOCKS >
EdgesOfOneNode

The type of an internal bucket which contains the edges of one node.

• typedef CommonPoolOfBlocks< RelabeledEdgeWithoutSource, DS INT EDGESPERBLOCK,
DS INT NO OF BLOCKS> PoolEdgesOfOneNode

The type of the common pool of the internal buckets.

Private Methods

• void initBuckets()

Initializes the external buckets and distributes the edges to the external buckets.

• void reduceNodes()

Reduces the number of nodes.

• BucketIDbucketID(NodeID nodeID) const

Returns the ID of the bucket which contains the edges of the given node.

• void addToExternalBucket(constRelabeledEdge&edge)

Adds the given edge to the appropriate external bucket.

26

• void addToExternalBucket(constRelabeledEdge&edge, BucketID newBucketID)

Adds the given edge to the bucket which is specified by newBucketID.

Private Attributes

• EdgeVector< Edge> & graph

Reference to the given graph.

• MST & result

Reference to aMSTobject which stores the result.

• NodeCount noOfNodesInIntMem

The number of nodes which fit in internal memory.

• InternalMemoryBucket∗ firstExtBucket

The first external bucket which contains the edges of the nodes which fit in internal memory.

• std::vector< EdgesOfSeveralNodes∗ > extBuckets

The external buckets.

• stxxl::prefetchpool< EdgesOfSeveralNodes::blocktype> prefetchPool

The prefetch pool that is used by the external buckets.

• stxxl::write pool< EdgesOfSeveralNodes::blocktype> writePool

The write pool that is used by the external buckets.

• EdgesOfOneNodeintBuckets[nodesPerBucket]

The internal buckets.

• NodeID firstNodeIDofCurrentBucket

The identifier of the first node in the current external bucket will be used to compute the internal bucket
index of a node.

A.3.1.1 Detailed Description

template<NodeCount nodesPerBucket = 1> class Buckets< nodesPerBucket>

Represents an algorithm for reducing the number of nodes of a graph (in order to compute a minimum
spanning tree) and the required data structures.

This implementation uses several buckets.

template parameter: The number of nodes per bucket. This value doesn’t apply to the first bucket, because
it contains the edges of the first ”noOfNodesInIntMem” nodes.

27

A.3.1.2 Constructor & Destructor Documentation

template<NodeCount nodesPerBucket = 1> Buckets< nodesPerBucket>::Buckets (EdgeVector<
Edge > & graph, MST & result, BucketID noOfBuckets, NodeCount noOfNodesInIntMem)
[inline]

Reduces the number of nodes of a graph (in order to compute a minimum spanning tree).

Parameters:
graph a reference to anEdgeVectorwhich represents the graph

result a reference to aMST object which stores the result

noOfBuckets the number of external buckets which should be used

noOfNodesInIntMem the number of nodes which fit in internal memory

A.3.1.3 Member Function Documentation

template<NodeCount nodesPerBucket> Buckets< nodesPerBucket>::BucketID Buckets< nodes-
PerBucket>::bucketID (NodeID nodeID) const [inline, private]

Returns the ID of the bucket which contains the edges of the given node.

The first external bucket has the ID -1 because it is a special case. The second bucket is the first element of
extBuckets and has the ID 0 and so on.

template<NodeCount nodesPerBucket> void Buckets< nodesPerBucket >::reduceNodes ()
[private]

Reduces the number of nodes.

Only the first bucket ”survives”.

A.3.1.4 Member Data Documentation

template<NodeCount nodesPerBucket = 1> std::vector<EdgesOfSeveralNodes∗> Buckets< nodes-
PerBucket>:: extBuckets [private]

The external buckets.

Each bucket contains the edges of several nodes.

template<NodeCount nodesPerBucket = 1> EdgesOfOneNodeBuckets< nodesPerBucket>:: int-
Buckets[nodesPerBucket] [private]

The internal buckets.

Each bucket contains the edges of one node.

The documentation for this class was generated from the following files:

• buckets.h

• buckets.cpp

28

A.3.2 CommonPoolOfBlocks< value type, elementsPerBlock, noOfBlocks> Class
Template Reference

A CommonPoolOfBlocks manages blocks which can contain several elements of a specified valuetype.

#include <sparingStack.h >

Public Methods

• CommonPoolOfBlocks()

The default constructor.

• ∼CommonPoolOfBlocks()

The destructor.

• Block ∗ request()

Returns a pointer to a free block.

• void release(Block ∗block)

Adds a block which is no longer used to the free-list.

• void increaseReserveMemory(int newMemory)

Informs that more reserve memory is available.

A.3.2.1 Detailed Description

template<typename valuetype, int elementsPerBlock, int noOfBlocks> class CommonPoolOf-
Blocks< value type, elementsPerBlock, noOfBlocks>

A CommonPoolOfBlocks manages blocks which can contain several elements of a specified valuetype.

It can be used by several SparingStacks.

A.3.2.2 Constructor & Destructor Documentation

template<typename valuetype, int elementsPerBlock, int noOfBlocks> CommonPoolOfBlocks<
value type, elementsPerBlock, noOfBlocks>::∼CommonPoolOfBlocks () [inline]

The destructor.

Blocks which have been created additionally are deleted.

A.3.2.3 Member Function Documentation

template<typename valuetype, int elementsPerBlock, int noOfBlocks> void CommonPoolOf-
Blocks< value type, elementsPerBlock, noOfBlocks>::increaseReserveMemory (intnewMemory)
[inline]

Informs that more reserve memory is available.

Parameters:
newMemory the space in bytes which can be used by the request method if more blocks are required.

29

The documentation for this class was generated from the following file:

• sparingStack.h

A.3.3 CommonPoolOfBlocks< value type, elementsPerBlock, noOfBlocks
>::Block Class Reference

A block which can contain several elements.

#include <sparingStack.h >

Public Methods

• Block ()

The default constructor.

• void push(const valuetype &element)

Adds a element to the block.

• const valuetype & top () const

Returns a reference to the last element.

• void pop()

Removes the last element.

• void clear()

Removes all elements so that the block is empty.

• boolempty() const

Returns true iff the block contains no elements.

• bool full () const

Returns true iff the block can’t adopt more elements.

• int size() const

Returns the number of elements which are stored in the block.

• const valuetype & operator[](int index) const

Returns a reference to the element which is stored at the given position.

• void setPrevBlock(Block ∗const prev)

Sets the pointer to the previous block.

• Block ∗ prevBlock() const

Returns a pointer to the previous block.

30

Private Attributes

• int size

The number of elements which are stored in the block.

• Block ∗ prev

A pointer to the previous block.

• value type elements[elementsPerBlock]

The elements.

A.3.3.1 Detailed Description

template<typename valuetype, int elementsPerBlock, int noOfBlocks> class CommonPoolOf-
Blocks< value type, elementsPerBlock, noOfBlocks>::Block

A block which can contain several elements.

A.3.3.2 Member Function Documentation

template<typename valuetype, int elementsPerBlock, int noOfBlocks> void CommonPoolOf-
Blocks< value type, elementsPerBlock, noOfBlocks>::Block::pop () [inline]

Removes the last element.

Precondition(!):empty() must return false.

template<typename valuetype, int elementsPerBlock, int noOfBlocks> void CommonPoolOf-
Blocks< value type, elementsPerBlock, noOfBlocks>::Block::push (const value type & element)
[inline]

Adds a element to the block.

Precondition(!):full () must return false.

template<typename valuetype, int elementsPerBlock, int noOfBlocks> const valuetype&
CommonPoolOfBlocks< value type, elementsPerBlock, noOfBlocks >::Block::top () const
[inline]

Returns a reference to the last element.

Precondition(!):empty() must return false.

The documentation for this class was generated from the following file:

• sparingStack.h

A.3.4 DuplicatesRemover< SuperContainer> Class Template Reference

A container which can be used as an ’intermediate station’ in order to remove multiple edges.

#include <duplicatesRemover.h >

31

Public Methods

• DuplicatesRemover(SuperContainer∗superContainer)

Creates a DuplicatesRemover.

• void insert(constRelabeledEdgeWithoutSource&edge, NodeID source)

Adds an edge to the container.

• void clear(NodeID source)

Clears the container.

Private Types

• typedef std::pair< RelabeledEdgeWithoutSource, int > HashMapElement

The type of a hashMap-element.

Private Methods

• int hashFunction(NodeID x) const

Returns the hash value for the given node ID.

• int find (NodeID x) const

Returns the position of an edge with the given node ID in the hashMap.

• void clearLocal(NodeID x)

Removes entries from the hashMap beginning with the hash value of the given node ID and ending with the
first empty entry which is found.

• boolempty(int index) const

Returns true iff the given position in the hashMap is empty.

Private Attributes

• RelabeledEdgeWithoutSourceedges[maxSize]

This array contains all edges without vacancies.

• HashMapElementhashMap[hashMapSize]

The hashMap which contains the edges.

• EdgeCountsize

The number of edges which are stored in this container.

• SuperContainer∗ superContainer

A pointer to the super container, i.e.

32

Static Private Attributes

• const EdgeCountmaxSize= 1024

The capacity of the container.

• const EdgeCounthashMapSize= 2 ∗ maxSize

The size of the hash map.

A.3.4.1 Detailed Description

template<typename SuperContainer> class DuplicatesRemover< SuperContainer>

A container which can be used as an ’intermediate station’ in order to remove multiple edges.

If there is more than one edge with the same target node (the source node is always the same during one
pass), only the edge with minimum weight is preserved. If the capacity of the container is exhausted,
further edges which can’t be stored are output directly.

A.3.4.2 Member Typedef Documentation

template<typename SuperContainer> typedef std::pair<RelabeledEdgeWithoutSource, int>
DuplicatesRemover< SuperContainer>::HashMapElement [private]

The type of a hashMap-element.

The first component stores the edge, the second the index in the array ’edges’.

A.3.4.3 Constructor & Destructor Documentation

template<typename SuperContainer> DuplicatesRemover< SuperContainer >::Duplicates-
Remover (SuperContainer∗ superContainer) [inline]

Creates a DuplicatesRemover.

Parameters:
superContainera pointer to the super container, i.e. the container that uses this DuplicatesRemover

(either aBucketsor aPQueueobject). This is required in order to be able to put the edges to the
super container when the capacity of this container is exhausted or when this container is cleared.

A.3.4.4 Member Function Documentation

template<typename SuperContainer> void DuplicatesRemover< SuperContainer >::clear (Node-
ID source) [inline]

Clears the container.

The edges are written to the appropriate buckets.

template<typename SuperContainer> int DuplicatesRemover< SuperContainer >::find (NodeID
x) const [inline, private]

Returns the position of an edge with the given node ID in the hashMap.

If no appropriate edge is found, the position where such an edge should be stored is returned.

33

template<typename SuperContainer> void DuplicatesRemover< SuperContainer >::insert (const
RelabeledEdgeWithoutSource& edge, NodeID source) [inline]

Adds an edge to the container.

If an edge with the same target node is already in the container, the new edge replaces the old one if it has
a lower weight, otherwise it is discarded.

A.3.4.5 Member Data Documentation

template<typename SuperContainer> RelabeledEdgeWithoutSourceDuplicatesRemover< Super-
Container >:: edges[maxSize] [private]

This array contains all edges without vacancies.

This is useful in order to clear the container without traversing the whole hashMap.

template<typename SuperContainer> SuperContainer∗ DuplicatesRemover< SuperContainer
>:: superContainer [private]

A pointer to the super container, i.e.

the container that uses this DuplicatesRemover (either aBucketsor aPQueueobject). This is required in
order to be able to put the edges to the super container when the capacity of this container is exhausted or
when this container is cleared.

The documentation for this class was generated from the following file:

• duplicatesRemover.h

A.3.5 Edge Class Reference

Represents a directed and weighted edge.

#include <edge.h >

Inheritance diagram for Edge::

Edge

EdgeWithoutSource

RelabeledEdge

Public Types

• typedef EdgeWeightkey type

Used by stxxl::ksort in order to sort by weight.

34

Public Methods

• Edge(NodeID source=0, NodeID target=0, EdgeWeight weight=0)

The default constructor.

• NodeIDsource() const

Returns the identifier of the source vertex.

• void swap()

Swaps the source and the target vertex.

• bool isSelfLoop() const

Returns true iff this Edge is a self loop, i.e.

Static Public Attributes

• EdgeminWeight()

Returns an Edge object with minimum weight.

• EdgemaxWeight()

Returns an Edge object with maximum weight.

Private Attributes

• NodeID source

Friends

• booloperator==(const Edge &e1, const Edge &e2)

Determines if two edges have the same source and the same target vertex.

• std::ostream &operator<< (std::ostream &os, const Edge &e)

Writes a string representation of an Edge to an output stream.

A.3.5.1 Detailed Description

Represents a directed and weighted edge.

A.3.5.2 Member Function Documentation

bool Edge::isSelfLoop () const [inline]

Returns true iff this Edge is a self loop, i.e.

the source and the target vertices are identical.

The documentation for this class was generated from the following file:

• edge.h

35

A.3.6 EdgeVector< EdgeType, blockSize, noOfPages, pageSize> Class Template
Reference

Represents a weighted graph by a list of Edges.

#include <edgeVector.h >

Inheritance diagram for EdgeVector< EdgeType, blockSize, noOfPages, pageSize>::

EdgeVector< EdgeType, blockSize, noOfPages, pageSize >

result

Public Methods

• EdgeVector(NodeCount noOfNodes, EdgeCount noOfEdges)

Constructs an EdgeVector.

• EdgeCountnoOfEdges() const

Returns the number of edges of the graph.

• NodeCountnoOfNodes() const

Returns the number of nodes of the graph.

• boolempty() const

Returns true iff this list is empty, i.e.

• void sortByWeight()

Sorts the edges of the graph by weight.

Private Attributes

• NodeCount noOfNodes

Friends

• std::ostream &operator<< (std::ostream &os, EdgeVector< EdgeType, blockSize, noOfPages,
pageSize> &el)

Writes a string representation of the edge list to an output stream.

A.3.6.1 Detailed Description

template<typename EdgeType = Edge, unsigned int blockSize = DSDEFAULT BLOCK SIZE, un-
signed int noOfPages = DSDEFAULT NO OF PAGES, unsigned int pageSize = DSDEFAULT -
PAGE SIZE> class EdgeVector< EdgeType, blockSize, noOfPages, pageSize>

Represents a weighted graph by a list of Edges.

36

A.3.6.2 Constructor & Destructor Documentation

template<typename EdgeType = Edge, unsigned int blockSize = DSDEFAULT BLOCK SIZE, un-
signed int noOfPages = DSDEFAULT NO OF PAGES, unsigned int pageSize = DSDEFAULT -
PAGE SIZE> EdgeVector< EdgeType, blockSize, noOfPages, pageSize>::EdgeVector (NodeCount
noOfNodes, EdgeCountnoOfEdges) [inline]

Constructs an EdgeVector.

The number of nodes is stored and space for the edges is reserved, but the edges aren’t created. In order to
add the edges of the graph, use methods like ”pushback”.

Parameters:
noOfNodes the number of nodes in the graph

noOfEdges the number of edges which space is reserved for

A.3.6.3 Member Function Documentation

template<typename EdgeType = Edge, unsigned int blockSize = DSDEFAULT BLOCK SIZE, un-
signed int noOfPages = DSDEFAULT NO OF PAGES, unsigned int pageSize = DSDEFAULT -
PAGE SIZE> bool EdgeVector< EdgeType, blockSize, noOfPages, pageSize>::empty () const
[inline]

Returns true iff this list is empty, i.e.

it contains no edges.

The documentation for this class was generated from the following files:

• edgeVector.h
• edgeVector.cpp

A.3.7 EdgeWithoutSource Class Reference

Represents an edge without the source vertex.

#include <edge.h >

Inheritance diagram for EdgeWithoutSource::

EdgeWithoutSource

Edge RelabeledEdgeWithoutSource

RelabeledEdge

Public Methods

• EdgeWithoutSource(NodeID target=0, EdgeWeight weight=0)

The default constructor.

37

• NodeIDtarget() const

Returns the identifier of the target vertex.

• EdgeWeightweight() const

Returns the weight.

Static Public Attributes

• EdgeWithoutSourceminWeight()

Returns an EdgeWithoutSource object with minimum weight.

• EdgeWithoutSourcemaxWeight()

Returns an EdgeWithoutSource object with maximum weight.

Protected Methods

• void setTarget(NodeID target)

Sets the target vertex.

Private Attributes

• NodeID target

• EdgeWeight weight

Friends

• booloperator< (const EdgeWithoutSource &e1, const EdgeWithoutSource &e2)

Compares two edges by weight.

• booloperator==(const EdgeWithoutSource &e1, const EdgeWithoutSource &e2)

Returns true iff two EdgesWithoutSource are identical, i.e.

• std::ostream &operator<< (std::ostream &os, const EdgeWithoutSource &e)

Writes a string representation of an EdgeWithoutSource to an output stream.

A.3.7.1 Detailed Description

Represents an edge without the source vertex.

This makes sense when the source vertex is clear from the context.

38

A.3.7.2 Friends And Related Function Documentation

bool operator== (const EdgeWithoutSource &e1, const EdgeWithoutSource &e2) [friend]

Returns true iff two EdgesWithoutSource are identical, i.e.

the targets and the weights are equal.

The documentation for this class was generated from the following file:

• edge.h

A.3.8 GetWeight< EdgeType> Class Template Reference

Extracts the weight of an edge.

#include <edge.h >

Public Types

• typedef Edge::keytypekey type

Public Methods

• key typeoperator() (const EdgeType &obj)

Static Public Methods

• EdgeTypemin value ()

• EdgeTypemax value ()

A.3.8.1 Detailed Description

template<typename EdgeType = Edge> class GetWeight< EdgeType>

Extracts the weight of an edge.

Used by stxxl::ksort in order to sort by weight.

The documentation for this class was generated from the following file:

• edge.h

A.3.9 Kruskal< EdgeType> Class Template Reference

Represents Kruskal’s algorithm for determining a Minimum Spanning Tree of a weighted graph and the
required union/find data structure.

#include <kruskal.h >

39

Public Methods

• Kruskal(EdgeVector< EdgeType> &graph,MST &result)

Computes aMSTof a graph.

• ∼Kruskal()

The destructor.

Private Methods

• void computeMST()

Computes aMSTof the graph.

• void initUnionFind()

Initializes the union/find data structure.

• NodeIDfind (NodeID node)

Performs a find operation.

• boolunite(NodeID node1, NodeID node2)

Performs a union operation.

Private Attributes

• EdgeVector< EdgeType> & graph

Reference to the given graph.

• MST & result

Reference to aMSTobject which stores the result.

• std::vector< NodeID> parent

A vector which contains for each node the identifier of the parent node.

• std::vector< char> height

A vector which contains for each node the height of the belonging tree.

• EdgeCountedgesAddedToResult

Counts the number of edges which have been added to the resultingMST.

A.3.9.1 Detailed Description

template<typename EdgeType = Edge> class Kruskal< EdgeType>

Represents Kruskal’s algorithm for determining a Minimum Spanning Tree of a weighted graph and the
required union/find data structure.

40

A.3.9.2 Constructor & Destructor Documentation

template<typename EdgeType = Edge> Kruskal < EdgeType>::Kruskal (EdgeVector< EdgeType
> & graph, MST & result) [inline]

Computes aMST of a graph.

Parameters:
graph a reference to anEdgeVectorwhich represents the graph

result a reference to aMST object which stores the result

template<typename EdgeType = Edge> Kruskal < EdgeType>::∼Kruskal () [inline]

The destructor.

The given graph is deleted.

A.3.9.3 Member Function Documentation

template<typename EdgeType> NodeID Kruskal< EdgeType>::find (NodeID node) [inline,
private]

Performs a find operation.

Path compression is applied.

Parameters:
node the identifier of the node whose set should be determined

Returns :
the identifier of the canonical node which represents the set which ”node” belongs to

template<typename EdgeType> bool Kruskal< EdgeType>::unite (NodeID node1, NodeID node2)
[inline, private]

Performs a union operation.

Returns :
true iff node1 and node2 have belonged to different sets

A.3.9.4 Member Data Documentation

template<typename EdgeType = Edge> std::vector<char> Kruskal < EdgeType >:: height
[private]

A vector which contains for each node the height of the belonging tree.

Only the values of canonical nodes are relevant.

template<typename EdgeType = Edge> std::vector<NodeID> Kruskal < EdgeType >:: parent
[private]

A vector which contains for each node the identifier of the parent node.

The canonical node of a set (= the root of a tree) points to itself.

The documentation for this class was generated from the following files:

41

• kruskal.h

• kruskal.cpp

A.3.10 MST Class Reference

Represents a Minimum Spanning Tree (MST) of a graph.

#include <mst.h >

Public Methods

• MST ()

The default constructor.

• EdgeCountnoOfEdges() const

Returns the number of edges of the MST.

• EdgeWeightBigtotalWeight() const

Returns the sum of the weights of all edges of the MST.

• void add(constRelabeledEdge&edge)

Adds an edge to the MST.

• void add(constRelabeledEdgeWithoutSource&edge)

Adds an edge to the MST.

• void add(constEdge&edge)

Adds an edge to the MST.

Private Attributes

• EdgeVector< Edge, DS MST BLOCK SIZE, DSMST NO OF PAGES, DSMST PAGE SIZE >
mst

• EdgeWeightBig totalWeight

Friends

• std::ostream &operator<< (std::ostream &os, MST &mst)

Writes a string representation of the MST to an output stream.

A.3.10.1 Detailed Description

Represents a Minimum Spanning Tree (MST) of a graph.

42

A.3.10.2 Member Function Documentation

void MST::add (const RelabeledEdgeWithoutSource& edge) [inline]

Adds an edge to the MST.

This is an explicit copy of the add method for aRelabeledEdgein order to avoid virtual methods.

The documentation for this class was generated from the following file:

• mst.h

A.3.11 PQueue Class Reference

Represents an algorithm for reducing the number of nodes of a graph (in order to compute a minimum
spanning tree) and the required data structures.

#include <pQueue.h >

Public Methods

• PQueue(EdgeVector< Edge> &graph,MST &result, NodeCount noOfNodesInIntMem)

Reduces the number of nodes of a graph (in order to compute a minimum spanning tree).

• InternalMemoryBucket∗ getIntMemBucket()

Returns a pointer to the first external bucket which contains the edges of the nodes which fit in internal
memory.

• void add(constRelabeledEdge&edge)

Adds the given edge to the first external bucket or to the priority queue depending on the source vertex ID.

Private Types

• typedef stxxl::PRIORITYQUEUE GENERATOR< RelabeledEdge, SourceWeightOrdering<
RelabeledEdge>, DS PQUEUEINTERNAL MEMORY, DS PQUEUEMAX SIZE >::result
PriorityQueue

The type of the priority queue that is used during the node reduction phase.

Private Methods

• void initPQueue()

Initializes the priority queue and distributes the edges to the first external bucket and the priority queue.

• void reduceNodes()

Reduces the number of nodes.

43

Private Attributes

• EdgeVector< Edge> & graph

Reference to the given graph.

• MST & result

Reference to aMSTobject which stores the result.

• NodeCount noOfNodesInIntMem

The number of nodes which fit in internal memory.

• InternalMemoryBucket∗ firstExtBucket

The first external bucket which contains the edges of the nodes which fit in internal memory.

• stxxl::prefetchpool< PriorityQueue::blocktype> prefetchPool

The prefetch pool that is used by the priority queue.

• stxxl::write pool< PriorityQueue::blocktype> writePool

The write pool that is used by the priority queue.

• PriorityQueue pqueue

The priority queue.

A.3.11.1 Detailed Description

Represents an algorithm for reducing the number of nodes of a graph (in order to compute a minimum
spanning tree) and the required data structures.

This implementation uses an external priority queue.

A.3.11.2 Constructor & Destructor Documentation

PQueue::PQueue (EdgeVector< Edge> & graph, MST & result, NodeCountnoOfNodesInIntMem)
[inline]

Reduces the number of nodes of a graph (in order to compute a minimum spanning tree).

Parameters:
graph a reference to anEdgeVectorwhich represents the graph

result a reference to aMST object which stores the result

noOfNodesInIntMem the number of nodes which fit in internal memory

A.3.11.3 Member Function Documentation

void PQueue::reduceNodes () [private]

Reduces the number of nodes.

Only the first external bucket ”survives”.

The documentation for this class was generated from the following files:

44

• pQueue.h
• pQueue.cpp

A.3.12 Randomizer< Bijection > Class Template Reference

A bijection over{0,...,n-1} that can be used to randomize anEdgein order to obtain a (pseudo-)random
permutation.

#include <randomizer.h >

Public Methods

• Randomizer(NodeCount noOfNodes)

The constructor.

• RelabeledEdgerandomize(constEdge&edge) const

Randomizes anEdge.

Private Methods

• NodeIDrandomize(NodeID nodeID) const

Randomizes a node ID using the underlying bijection.

Private Attributes

• NodeCount noOfNodes

The number of nodes that specifies the domain and co-domain of the bijection.

• Bijection bijection

The underlying bijection.

A.3.12.1 Detailed Description

template<typename Bijection = RandomizerLinearCongruence> class Randomizer< Bijection >

A bijection over{0,...,n-1} that can be used to randomize anEdgein order to obtain a (pseudo-)random
permutation.

EitherRandomizerLinearCongruenceor RandomizerFeistelcan be used as underlying bijection.

A.3.12.2 Member Function Documentation

template<typename Bijection = RandomizerLinearCongruence> RelabeledEdgeRandomizer< Bi-
jection >::randomize (constEdge& edge) const [inline]

Randomizes anEdge.

45

The source and the target vertices are randomized using the bijection. The original source and target
vertices are saved, so aRelabeledEdge, which contains both the randomized and the original vertices, is
returned.

The documentation for this class was generated from the following file:

• randomizer.h

A.3.13 RandomizerFeistel Class Reference

A bijection that uses Feistel permutations.

#include <randomizer.h >

Public Methods

• RandomizerFeistel(NodeCount noOfNodes)

The constructor.

• NodeIDoperator()(NodeID nodeID) const

The bijection.

Private Methods

• void initRandomNumbers()

Initializes the table of random numbers.

Private Attributes

• NodeID sqRoot

The next integer>= the square root of the given number of nodes.

• int randomNumbers[noOfIterations][maxSqRoot]

The table of random numbers (used by the Feistel permutations).

Static Private Attributes

• const int noOfIterations= 2

The number of performed Feistel permutations.

• const int maxSqRoot= 0x10000

The maximum size ofsqRoot.

A.3.13.1 Detailed Description

A bijection that uses Feistel permutations.

46

A.3.13.2 Constructor & Destructor Documentation

RandomizerFeistel::RandomizerFeistel (NodeCountnoOfNodes) [inline]

The constructor.

A bijection over{0,...,r∧2-1} is initialized, whereat r is the next integer greater than or equal to the square
root of a given n.

The documentation for this class was generated from the following file:

• randomizer.h

A.3.14 RandomizerLinearCongruence Class Reference

A bijection that uses the linear congruential method.

#include <randomizer.h >

Public Methods

• RandomizerLinearCongruence(NodeCount noOfNodes)

The constructor.

• NodeIDoperator()(NodeID nodeID) const

The bijection.

Private Methods

• void determineNextPrime(NodeCount noOfNodes)

Determines the next prime number>= the given number of nodes.

• bool isPrime(NodeCount p) const

Returns true iff the given number is prime.

Private Attributes

• NodeCount prime

The next prime number>= the given number of nodes.

A.3.14.1 Detailed Description

A bijection that uses the linear congruential method.

47

A.3.14.2 Constructor & Destructor Documentation

RandomizerLinearCongruence::RandomizerLinearCongruence (NodeCount noOfNodes)
[inline]

The constructor.

A bijection over{0,...p-1} is initialized, whereat p is the next prime number greater than or equal to a given
n.

The documentation for this class was generated from the following file:

• randomizer.h

A.3.15 RelabeledEdge Class Reference

Represents a relabeled edge.

#include <relabeledEdge.h >

Inheritance diagram for RelabeledEdge::

RelabeledEdge

Edge

EdgeWithoutSource

Public Methods

• RelabeledEdge(NodeID source=0, NodeID target=0, EdgeWeight weight=0, NodeID origSource=0,
NodeID origTarget=0)

The default constructor.

• RelabeledEdge(constEdge&edge)

Creates a relabeled edge from a normal edge.

• RelabeledEdge(constRelabeledEdgeWithoutSource&edge, NodeID newSource)

Creates a relabeled edge from aRelabeledEdgeWithoutSource.

• NodeIDoriginalSource() const

Returns the identifier of the original source vertex.

• NodeIDoriginalTarget() const

Returns the identifier of the original target vertex.

Static Public Attributes

• RelabeledEdgeminWeight()

48

Returns a RelabeledEdge object with minimum weight.

• RelabeledEdgemaxWeight()

Returns a RelabeledEdge object with maximum weight.

Private Attributes

• NodeID originalSource
• NodeID originalTarget

Friends

• std::ostream &operator<< (std::ostream &os, const RelabeledEdge &e)

Writes a string representation of a RelabeledEdge to an output stream.

A.3.15.1 Detailed Description

Represents a relabeled edge.

I.e. an edge whose source and target vertices have been relabeled and the original indices are stored
additionally. This class doesn’t extendRelabeledEdgeWithoutSourcein order to avoid multiple inheritance.

A.3.15.2 Constructor & Destructor Documentation

RelabeledEdge::RelabeledEdge (constEdge& edge) [inline]

Creates a relabeled edge from a normal edge.

The original source resp. target equals the current source resp. target.

RelabeledEdge::RelabeledEdge (constRelabeledEdgeWithoutSource& edge, NodeID newSource)
[inline]

Creates a relabeled edge from aRelabeledEdgeWithoutSource.

The source vertex must be provided as second parameter. If necessary, source and target are swapped, so
that source is greater than (or equal to) target.

The documentation for this class was generated from the following file:

• relabeledEdge.h

A.3.16 RelabeledEdgeWithoutSource Class Reference

Represents a relabeled edge without the source vertex.

#include <relabeledEdge.h >

Inheritance diagram for RelabeledEdgeWithoutSource::

49

RelabeledEdgeWithoutSource

EdgeWithoutSource

Public Methods

• RelabeledEdgeWithoutSource()

The default constructor.

• RelabeledEdgeWithoutSource(constRelabeledEdge&edge)

Creates a RelabeledEdgeWithoutSource from aRelabeledEdge.

• NodeIDoriginalSource() const

Returns the identifier of the original source vertex.

• NodeIDoriginalTarget() const

Returns the identifier of the original target vertex.

Private Attributes

• NodeID originalSource
• NodeID originalTarget

Friends

• std::ostream &operator<< (std::ostream &os, const RelabeledEdgeWithoutSource &e)

Writes a string representation of a RelabeledEdgeWithoutSource to an output stream.

A.3.16.1 Detailed Description

Represents a relabeled edge without the source vertex.

This makes sense when the source vertex is clear from the context.

A.3.16.2 Constructor & Destructor Documentation

RelabeledEdgeWithoutSource::RelabeledEdgeWithoutSource (constRelabeledEdge& edge)

Creates a RelabeledEdgeWithoutSource from aRelabeledEdge.

The source vertex is thrown away.

The documentation for this class was generated from the following file:

• relabeledEdge.h

50

A.3.17 REWSSparingStack< elementsPerBlock, noOfBlocks> Class Template
Reference

A specializedSparingStackwhich storesRelabeledEdgeWithoutSource-objects.

#include <sparingStack.h >

Inheritance diagram for REWSSparingStack< elementsPerBlock, noOfBlocks>::

REWS_SparingStack< elementsPerBlock, noOfBlocks >

SparingStack< RelabeledEdgeWithoutSource, elementsPerBlock, noOfBlocks >

Public Methods

• NodeIDdetermineMinEdge(MST &result) const

Determines the edge with minimum weight.

A.3.17.1 Detailed Description

template<int elementsPerBlock, int noOfBlocks> class REWSSparingStack< elementsPerBlock,
noOfBlocks>

A specializedSparingStackwhich storesRelabeledEdgeWithoutSource-objects.

A.3.17.2 Member Function Documentation

template<int elementsPerBlock, int noOfBlocks> NodeID REWS SparingStack< elementsPer-
Block, noOfBlocks>::determineMinEdge (MST & result) const [inline]

Determines the edge with minimum weight.

It is added to the resulting minimum spanning tree and the target node ID is returned.

Parameters:
result a reference to theMST object which stores the resulting minimum spanning tree

The documentation for this class was generated from the following file:

• sparingStack.h

A.3.18 SourceTargetWeightOrdering Class Reference

A StrictWeakOrdering predicate which can be used to compare two edges first by the source vertex, then -
if the source vertices are equal - by the target vertex and finally by weight.

#include <edge.h >

51

Public Methods

• booloperator() (constEdge&e1, constEdge&e2) const

Static Public Attributes

• Edgemin value ()

• Edgemax value ()

A.3.18.1 Detailed Description

A StrictWeakOrdering predicate which can be used to compare two edges first by the source vertex, then -
if the source vertices are equal - by the target vertex and finally by weight.

The documentation for this class was generated from the following file:

• edge.h

A.3.19 SourceWeightOrdering< EdgeType> Class Template Reference

A StrictWeakOrdering predicate which can be used to compare two edges first by the source vertex, then -
if the source vertices are equal - by weight.

#include <edge.h >

Public Methods

• booloperator() (const EdgeType &e1, const EdgeType &e2) const

Static Public Methods

• EdgeTypemin value ()

• EdgeTypemax value ()

A.3.19.1 Detailed Description

template<typename EdgeType = Edge> class SourceWeightOrdering< EdgeType>

A StrictWeakOrdering predicate which can be used to compare two edges first by the source vertex, then -
if the source vertices are equal - by weight.

Used as comparison type by stxxl::priorityqueue. The largest element, which is returned by top(), is the
edge with the highest source vertex ID and (if there are several edges with the same source vertex) minimum
weight.

The documentation for this class was generated from the following file:

• edge.h

52

A.3.20 SparingStack< value type, elementsPerBlock, noOfBlocks> Class Tem-
plate Reference

A stack which stores its elements in blocks which are managed by aCommonPoolOfBlocks.

#include <sparingStack.h >

Public Methods

• SparingStack()

The default constructor.

• ∼SparingStack()

The destructor.

• void setPool(Pool∗pool)

Sets theCommonPoolOfBlockswhich should be used.

• boolempty() const

Returns true iff the stack is empty.

• void push(const valuetype &element)

Adds an element to the stack.

• const valuetype & top () const

Returns a reference to the last element.

• void pop()

Removes the last element.

• int size() const

Returns the number of elements which are stored in the stack.

Protected Types

• typedefCommonPoolOfBlocks< value type, elementsPerBlock, noOfBlocks> Pool

The type of the usedCommonPoolOfBlocks.

• typedef Pool::BlockBlock

The type of a Block which stores several elements.

Protected Attributes

• Pool∗ pool

A pointer to the usedCommonPoolOfBlocks.

• Block ∗ top

A pointer to the list of blocks which store the elements.

53

• Block bottom

The bottom block which belongs to the stack.

A.3.20.1 Detailed Description

template<typename valuetype, int elementsPerBlock, int noOfBlocks> class SparingStack< value -
type, elementsPerBlock, noOfBlocks>

A stack which stores its elements in blocks which are managed by aCommonPoolOfBlocks.

A.3.20.2 Member Function Documentation

template<typename valuetype, int elementsPerBlock, int noOfBlocks> void SparingStack< value -
type, elementsPerBlock, noOfBlocks>::setPool (Pool∗ pool) [inline]

Sets theCommonPoolOfBlockswhich should be used.

This method must be called after the object has been created and before it is used.

The documentation for this class was generated from the following file:

• sparingStack.h

A.3.21 WeightOrdering< EdgeType> Class Template Reference

A StrictWeakOrdering predicate which can be used to compare two edges by weight.

#include <edge.h >

Public Methods

• booloperator() (const EdgeType &e1, const EdgeType &e2) const

Static Public Methods

• EdgeTypemin value ()
• EdgeTypemax value ()

A.3.21.1 Detailed Description

template<typename EdgeType = Edge> class WeightOrdering< EdgeType>

A StrictWeakOrdering predicate which can be used to compare two edges by weight.

Used by stxxl::sort in order to sort by weight.

The documentation for this class was generated from the following file:

• edge.h

54

Appendix B

Source Code

B.1 Main

B.1.1 config.h

// ∗∗ COMMON SETTINGS∗∗
// display verbose debugging messages
#define DS VERBOSE1(x) x
#define DS VERBOSE2(x)

// logging
#define DS LOGGING1(x) x
#define DS LOGGING2(x) x

// external sorting
#define DS INTERNAL MEMORYFOR SORTING 650∗1024 ∗1024

// default template parameters of EdgeVector
// used by the first external bucket and by the input graph
#define DS DEFAULT BLOCK SIZE 2 ∗1024 ∗1024
#define DS DEFAULT NO OF PAGES 1
#define DS DEFAULT PAGE SIZE 4
#define DS DEFAULT PAGER lru pager

// template parameters of the mst object which stores the result
#define DS MST BLOCK SIZE 2 ∗1024 ∗1024
#define DS MST NO OF PAGES 1
#define DS MST PAGE SIZE 4

// remove duplicates
#define DS REMOVEDUPLICATES(x) x
#define DS DONT REMOVEDUPLICATES(x)

// randomize the input graph
#define DS RANDOMIZE(x) x
#define DS DONT RANDOMIZE(x)

// node reduction implementation
#define DS USE BUCKETS(x) x
#define DS USE PQUEUE(x)

// ∗∗ BUCKETS IMPLEMENTATION∗∗
// external buckets
#define DS EXT BUCKET SIZE 1800000
// (The size of the first external bucket is the number of nodes which
// fit in internal memory.)

55

#define DS EXT FIRST BUCKET SIZE 160 ∗1000 ∗1000

// template parameters of the external buckets
// (these values don’t apply to the first external bucket)
#define DS EXT BLOCK SIZE 512 ∗1024
#define DS EXT PAGE SIZE 1
#define DS EXT PREFETCHPOOL 4
#define DS EXT WRITE POOL 4

// template parameters of the internal buckets
#define DS INT EDGESPER BLOCK 8
#define DS INT NO OF BLOCKS 1500000

// ∗∗ PQUEUE IMPLEMENTATION∗∗
#define DS PQUEUEINTERNAL MEMORY 500∗1024 ∗1024
#define DS PQUEUEMAX SIZE 3 ∗1000 ∗1000
#define DS PQUEUEPREFETCHPOOL 50
#define DS PQUEUEWRITE POOL 50

B.1.2 main.cpp

#include <iostream>

#include "config.h"
#include "data structures/mst.h"
#include "data structures/edgeVector.cpp"
#include "utils/logging.h"
#include "utils/utils.h"

DS LOGGING1(Logging logging("log.txt"));

#include "buckets/buckets.cpp"
#include "priority queue/pQueue.cpp"
#include "utils/generate.cpp"
#include "utils/importExport.cpp"
#include "base case/kruskal.cpp"
#include "utils/parameters.h"

/ ∗∗ Aborts processing after the node reduction phase. ∗/
void abortAfterNodeReducing(std::string filename, InternalMemoryBucket ∗reducedGraph)
{

if (filename != "") {
// write reduced graph to the given file
std::ofstream outFile(filename.c str());
// dummy EdgeVector in order to avoid a compiler error:
// An instance of EdgeVector<RelabeledEdge> is needed to provide
// a suitable output operator for intMemBucket.
EdgeVector<RelabeledEdge> dummy(0,0);
outFile << ’r’ << std::endl << ∗reducedGraph;
DS LOGGING1(logging.events().push back(

LoggingEvent("reduced graph written to file")));
}
std::cout << std::endl << "abort after the ’node reducing’-phase" << std::endl;

}

/ ∗∗ The main program. ∗/
int main(int argc, char ∗argv[])
{

DS LOGGING1(logging.events().push back(LoggingEvent("begin")));

56

Parameters param(argc, argv); // parse the command-line arguments

DS USE BUCKETS(
typedef Buckets<DS EXT BUCKET SIZE> MyBuckets;
// compute the number of buckets that are needed to store the edges of all nodes
MyBuckets::BucketID noOfBuckets =

MyBuckets::noOfExtBuckets(param.noOfNodes(),
param.noOfNodesInInternalMemory());

DS VERBOSE1(std::cout << "number of external buckets = "
<< noOfBuckets << std::endl;

memoryUsageForecast(param.noOfNodes(),
param.noOfNodesInInternalMemory(),
noOfBuckets));

)

// INPUT
EdgeVector<> ∗ inputGraph;

if (param.randomGraph()) {
// generate random graph
inputGraph = generateRandomGraph(param.randomGraphNoOfNodes(),

param.randomGraphNoOfEdges());

DS LOGGING1(logging.setProblemInstance(
new LoggingRandomGraph(param.randomGraphNoOfNodes(),

param.randomGraphNoOfEdges(),
param.noOfNodesInInternalMemory())));

}
if (param.gridGraph()) {

// generate grid graph
inputGraph = generateGridGraph(param.gridGraphNoOfNodesX(),

param.gridGraphNoOfNodesY());

DS LOGGING1(logging.setProblemInstance(
new LoggingGridGraph(param.gridGraphNoOfNodesX(),

param.gridGraphNoOfNodesY(),
param.noOfNodesInInternalMemory())));

}
if (param.geometricGraph()) {

// generate geometric graph
inputGraph = generateGeometricGraph(param.geometricGraphNoOfNodes(),

param.geometricGraphNoOfNeighbours());

DS LOGGING1(logging.setProblemInstance(
new LoggingGeometricGraph(param.geometricGraphNoOfNodes(),

param.geometricGraphNoOfNeighbours(),
inputGraph->noOfEdges(),
param.noOfNodesInInternalMemory())));

}
if (param.importInputFilename() != "") {

// import graph from file
DS VERBOSE1(std::cout << std::endl << "import graph" << std::endl);
inputGraph = importEdgeVector(param.importInputFilename());

DS LOGGING1(logging.setProblemInstance(
new LoggingImportedGraph(inputGraph->noOfNodes(),

inputGraph->noOfEdges(),
param.noOfNodesInInternalMemory(),
param.importInputFilename())));

}

// export input graph
if (param.exportInputFilename() != "") {

DS VERBOSE1(std::cout << std::endl << "export graph" << std::endl);

if (param.exportInputFormatAdjacencyList()) {

57

// export format: adjacency lists
std::ofstream outFile(param.exportInputFilename().c str());
exportEdgeVectorAdjList(outFile, ∗inputGraph);

}
else {

if (param.exportInputFormatCompressed()) {
// export format: compressed
exportEdgeVectorCompressed(param.exportInputFilename(), ∗inputGraph);

}
else {

// export format: list of edges
std::ofstream outFile(param.exportInputFilename().c str());
outFile << ∗inputGraph;

}
}
if (param.quitAfterExporting()) {

// quit after exporting
std::cout << std::endl

<< "quit after exporting the input graph." << std::endl;
exit(0);

}
}

DS LOGGING1(logging.events().push back(LoggingEvent("graph generated/imported")));

MST result; // the resulting MST

// PROCESSING
if (param.noOfNodes() <= param.noOfNodesInInternalMemory()) {

// all nodes fit in internal memory
// ==> Kruskal’s algorithm can by applied immediately
Kruskal<Edge> ∗kruskal = new Kruskal<Edge>(∗inputGraph,result);
delete kruskal;

}
else {

// node reduction phase is required
DS LOGGING1(logMemoryUsage("before buckets"));

// perform node reduction

DS USE BUCKETS(
// buckets implementation
MyBuckets ∗buckets = new MyBuckets(∗inputGraph, result,

noOfBuckets,
param.noOfNodesInInternalMemory());

InternalMemoryBucket ∗intMemBucket = buckets->getIntMemBucket();
delete buckets;

)

DS USE PQUEUE(
// priority queue implementation
PQueue ∗pqueue = new PQueue(∗inputGraph, result,

param.noOfNodesInInternalMemory());
InternalMemoryBucket ∗intMemBucket = pqueue->getIntMemBucket();
delete pqueue;

)

// end of ’node reduction’

DS LOGGING1(logMemoryUsage("after buckets"));

DS LOGGING1(logging.events().push back(LoggingEvent("nodes reduced")));

58

if (param.abortAfterNodeReducing()) {
// abort processing after the node reduction phase
abortAfterNodeReducing(param.reducedGraphFilename(), intMemBucket);

}
else {

// apply Kruskal’s algorithm to the reduced graph
Kruskal<RelabeledEdge> ∗kruskal =

new Kruskal<RelabeledEdge>(∗intMemBucket,result);
delete kruskal;

}
}

// OUTPUT
DS LOGGING1(logging.setResult(new LoggingResult(result.noOfEdges(),

result.totalWeight())));
DS LOGGING1(logging.events().push back(LoggingEvent("end")));
DS LOGGING1(logging.printLog());

if (param.outputFilename() != "") {
// write the computed mst to the given file
std::ofstream outFile(param.outputFilename().c str());
outFile << result;

}

DS VERBOSE1(std::cout << std::endl << "finished." << std::endl);

return 0;
}

B.2 Data Structures

B.2.1 edge.h

#ifndef EDGE H
#define EDGE H

#include <iostream>

typedef unsigned int NodeID;
typedef unsigned int EdgeWeight;
typedef unsigned long long int EdgeWeightBig; // used for the sum of edge weights

/ ∗∗
Represents an edge without the source vertex.
This makes sense when the source vertex is clear from the context.

∗/
class EdgeWithoutSource
{

/ ∗∗ Compares two edges by weight. ∗/
friend bool operator <(const EdgeWithoutSource &e1,

const EdgeWithoutSource &e2) {
return e1. weight<e2. weight;

}

/ ∗∗
Returns true iff two EdgesWithoutSource are identical,
i.e. the targets and the weights are equal.

∗/
friend bool operator ==(const EdgeWithoutSource &e1,

59

const EdgeWithoutSource &e2) {
return (e1. target == e2. target) && (e1. weight == e2. weight);

}

/ ∗∗ Writes a string representation of an EdgeWithoutSource to an output stream. ∗/
friend std::ostream& operator <<(std::ostream& os, const EdgeWithoutSource &e) {

os << e.target() << " " << e.weight();
return os;

}

public :
/ ∗∗ Returns an EdgeWithoutSource object with minimum weight. ∗/
static EdgeWithoutSource minWeight() {return EdgeWithoutSource(0,0); }

/ ∗∗ Returns an EdgeWithoutSource object with maximum weight. ∗/
static EdgeWithoutSource maxWeight() {return EdgeWithoutSource(0,0xffffffff); }

/ ∗∗ The default constructor. ∗/
EdgeWithoutSource(NodeID target = 0, EdgeWeight weight = 0)

: target(target), weight(weight)
{}

/ ∗∗ Returns the identifier of the target vertex. ∗/
NodeID target() const {return target; }

/ ∗∗ Returns the weight. ∗/
EdgeWeight weight() const {return weight; }

protected :
/ ∗∗ Sets the target vertex. ∗/
void setTarget(NodeID target) { target = target; }

private :
NodeID target;
EdgeWeight weight;

};

/ ∗∗
Represents a directed and weighted edge.

∗/
class Edge : public EdgeWithoutSource
{

/ ∗∗ Determines if two edges have the same source and the same target vertex. ∗/
friend bool operator ==(const Edge &e1, const Edge &e2) {

return (e1.source()==e2.source()) && (e1.target()==e2.target());
}

/ ∗∗ Writes a string representation of an Edge to an output stream. ∗/
friend std::ostream& operator <<(std::ostream& os, const Edge &e) {

os << e.source() << " " << e.target() << " " << e.weight();
return os;

}

public :
/ ∗∗ Used by stxxl::ksort in order to sort by weight. ∗/
typedef EdgeWeight key type;

/ ∗∗ Returns an Edge object with minimum weight. ∗/
static Edge minWeight() {return Edge(0,0,0); }

/ ∗∗ Returns an Edge object with maximum weight. ∗/
static Edge maxWeight() {return Edge(0,0,0xffffffff); }

/ ∗∗ The default constructor. ∗/
Edge(NodeID source = 0, NodeID target = 0, EdgeWeight weight = 0)

60

: source(source), EdgeWithoutSource(target, weight)
{}

/ ∗∗ Returns the identifier of the source vertex. ∗/
NodeID source() const {return source; }

/ ∗∗ Swaps the source and the target vertex. ∗/
void swap() {NodeID tmp = source; source = target(); setTarget(tmp); }

/ ∗∗
Returns true iff this Edge is a self loop, i.e. the source and the
target vertices are identical.

∗/
bool isSelfLoop() const {return (source() == target()); }

private :
NodeID source;

};

/ ∗∗
Extracts the weight of an edge.
Used by stxxl::ksort in order to sort by weight.

∗/
template <typename EdgeType = Edge>
class GetWeight
{
public :

typedef Edge::key type key type;
key type operator () (const EdgeType & obj)

{
return obj.weight();

}
static EdgeType min value() { return EdgeType::minWeight(); }
static EdgeType max value() { return EdgeType::maxWeight(); }

};

/ ∗∗
A StrictWeakOrdering predicate which can be used to compare two edges by
weight.
Used by stxxl::sort in order to sort by weight.

∗/
template <typename EdgeType = Edge>
class WeightOrdering
{

public :
bool operator () (const EdgeType &e1, const EdgeType &e2) const

{
if (e1.weight() < e2.weight()) return true ;
return false ;

}
static EdgeType min value() { return EdgeType::minWeight(); }
static EdgeType max value() { return EdgeType::maxWeight(); }

};

/ ∗∗
A StrictWeakOrdering predicate which can be used to compare two edges first by
the source vertex, then - if the source vertices are equal - by the target
vertex and finally by weight.

∗/
class SourceTargetWeightOrdering
{

61

public :
bool operator () (const Edge &e1, const Edge &e2) const

{
// first, compare by source
if (e1.source() < e2.source()) return true ;
if (e1.source() > e2.source()) return false ;

// then, by target
if (e1.target() < e2.target()) return true ;
if (e1.target() > e2.target()) return false ;

// finally, by weight
if (e1.weight() < e2.weight()) return true ;
return false ;

}

static Edge min value() {return Edge(0,0,0); }
static Edge max value() {return Edge(0xffffffff,0xffffffff,0xffffffff); }

};

/ ∗∗
A StrictWeakOrdering predicate which can be used to compare two edges first by
the source vertex, then - if the source vertices are equal - by weight.
Used as comparison type by stxxl::priority queue. The largest element, which is
returned by top(), is the edge with the highest source vertex ID and (if there
are several edges with the same source vertex) minimum weight.

∗/
template <typename EdgeType = Edge>
class SourceWeightOrdering
{

public :
bool operator () (const EdgeType &e1, const EdgeType &e2) const

{
// first, compare by source
if (e1.source() < e2.source()) return true ;
if (e1.source() > e2.source()) return false ;

// then, by weight
if (e1.weight() > e2.weight()) return true ;
return false ;

}

static EdgeType min value() { return EdgeType::minWeight(); }
static EdgeType max value() { return EdgeType::maxWeight(); }

};

#endif // EDGE H

B.2.2 relabeledEdge.h

#ifndef RELABELEDEDGE H
#define RELABELEDEDGE H

#include "edge.h"

class RelabeledEdge;

/ ∗∗
Represents a relabeled edge without the source vertex.
This makes sense when the source vertex is clear from the context.

∗/

62

class RelabeledEdgeWithoutSource : public EdgeWithoutSource
{

/ ∗∗
Writes a string representation of a RelabeledEdgeWithoutSource
to an output stream.

∗/
friend std::ostream& operator <<(std::ostream& os,

const RelabeledEdgeWithoutSource &e) {
os << e.target() << " " << e.weight() << " "

<< e.originalSource() << " " << e.originalTarget();
return os;

}

public :
/ ∗∗ The default constructor. ∗/
RelabeledEdgeWithoutSource()

: EdgeWithoutSource(), originalSource(0), originalTarget(0)
{}

/ ∗∗
Creates a RelabeledEdgeWithoutSource from a RelabeledEdge.
The source vertex is thrown away.

∗/
RelabeledEdgeWithoutSource(const RelabeledEdge &edge);

/ ∗∗ Returns the identifier of the original source vertex. ∗/
NodeID originalSource() const {return originalSource; }

/ ∗∗ Returns the identifier of the original target vertex. ∗/
NodeID originalTarget() const {return originalTarget; }

private :
NodeID originalSource;
NodeID originalTarget;

};

/ ∗∗
Represents a relabeled edge. I.e. an edge whose source and target vertices
have been relabeled and the original indices are stored additionally.
This class doesn’t extend RelabeledEdgeWithoutSource in order to avoid
multiple inheritance.

∗/
class RelabeledEdge : public Edge
{

/ ∗∗ Writes a string representation of a RelabeledEdge to an output stream. ∗/
friend std::ostream& operator <<(std::ostream& os, const RelabeledEdge &e) {

os << e.source() << " " << e.target() << " " << e.weight() << " "
<< e.originalSource() << " " << e.originalTarget();

return os;
}

public :
/ ∗∗ Returns a RelabeledEdge object with minimum weight. ∗/
static RelabeledEdge minWeight() {return RelabeledEdge(0,0,0,0,0); }

/ ∗∗ Returns a RelabeledEdge object with maximum weight. ∗/
static RelabeledEdge maxWeight() {return RelabeledEdge(0,0,0xffffffff,0,0); }

/ ∗∗ The default constructor. ∗/
RelabeledEdge(NodeID source = 0, NodeID target = 0, EdgeWeight weight = 0,

NodeID origSource = 0, NodeID origTarget = 0)
: Edge(source,target,weight),

originalSource(origSource), originalTarget(origTarget)
{}

63

/ ∗∗
Creates a relabeled edge from a normal edge.
The original source resp. target equals the current source resp. target.

∗/
RelabeledEdge(const Edge &edge)

: Edge(edge), originalSource(edge.source()),
originalTarget(edge.target())

{}

/ ∗∗
Creates a relabeled edge from a RelabeledEdgeWithoutSource.
The source vertex must be provided as second parameter.
If necessary, source and target are swapped, so that
source is greater than (or equal to) target.

∗/
RelabeledEdge(const RelabeledEdgeWithoutSource &edge, NodeID newSource)

: Edge(newSource, edge.target(), edge.weight()),
originalSource(edge.originalSource()), originalTarget(edge.originalTarget())

{
if (source() < target()) swap();

}

/ ∗∗ Returns the identifier of the original source vertex. ∗/
NodeID originalSource() const {return originalSource; }

/ ∗∗ Returns the identifier of the original target vertex. ∗/
NodeID originalTarget() const {return originalTarget; }

private :
NodeID originalSource;
NodeID originalTarget;

};

/ ∗∗
Creates a RelabeledEdgeWithoutSource from a RelabeledEdge.
The source vertex is thrown away.

∗/
RelabeledEdgeWithoutSource::RelabeledEdgeWithoutSource(const RelabeledEdge &edge)

: EdgeWithoutSource(edge.target(), edge.weight()),
originalSource(edge.originalSource()), originalTarget(edge.originalTarget())

{}

#endif // RELABELEDEDGE H

B.2.3 edgeVector.h

#ifndef EDGEVECTOR H
#define EDGEVECTOR H

#include <iostream>

#include "relabeledEdge.h"

#include "../stxxl/containers/vector.h"

typedef unsigned int EdgeCount;
typedef unsigned int NodeCount;

/ ∗∗

64

Represents a weighted graph by a list of Edges.
∗/
template <typename EdgeType = Edge,

unsigned int blockSize = DS DEFAULT BLOCK SIZE,
unsigned int noOfPages = DS DEFAULT NO OF PAGES,
unsigned int pageSize = DS DEFAULT PAGE SIZE>

class EdgeVector : public stxxl::VECTOR GENERATOR<EdgeType, pageSize, noOfPages,
blockSize>::result

{
/ ∗∗ Writes a string representation of the edge list to an output stream. ∗/
friend std::ostream& operator <<(std::ostream& os,

EdgeVector<EdgeType,blockSize,noOfPages,pageSize> &el) {
os << el.noOfNodes() << " " << el.noOfEdges() << std::endl;
for (EdgeCount i=0; i<el.noOfEdges(); i++)

os << el[i] << std::endl;
return os;

}

public :
/ ∗∗

Constructs an EdgeVector.
The number of nodes is stored and space for the edges is reserved,
but the edges aren’t created. In order to add the edges of the graph,
use methods like "push back".
@param noOfNodes the number of nodes in the graph
@param noOfEdges the number of edges which space is reserved for

∗/
EdgeVector(NodeCount noOfNodes, EdgeCount noOfEdges)

: noOfNodes(noOfNodes)
{ reserve(noOfEdges); }

/ ∗∗ Returns the number of edges of the graph. ∗/
EdgeCount noOfEdges() const {return size(); }

/ ∗∗ Returns the number of nodes of the graph. ∗/
NodeCount noOfNodes() const {return noOfNodes; }

/ ∗∗ Returns true iff this list is empty, i.e. it contains no edges. ∗/
bool empty() const {return (noOfEdges() == 0); }

/ ∗∗ Sorts the edges of the graph by weight. ∗/
void sortByWeight();

private :
NodeCount noOfNodes;

};

/ ∗∗
The type of the first external bucket which contains the
edges of the nodes which fit in internal memory.

∗/
typedef EdgeVector<RelabeledEdge> InternalMemoryBucket;

#endif // EDGEVECTOR H

B.2.4 edgeVector.cpp

#include "edgeVector.h"

65

//#include "../stxxl/algo/sort.h"
#include "../stxxl/algo/ksort.h"

/ ∗∗ Sorts the edges of the graph by weight. ∗/
template <typename EdgeType, unsigned int blockSize,

unsigned int noOfPages, unsigned int pageSize>
void EdgeVector<EdgeType,blockSize,noOfPages,pageSize>::sortByWeight()
{

// sort of STXXL
// stxxl::sort(begin(),end(),WeightOrdering<EdgeType>(),DS INTERNAL MEMORYFOR SORTING);

// ksort of STXXL
stxxl::ksort(begin(),end(),GetWeight<EdgeType>(),DS INTERNAL MEMORYFOR SORTING);

}

B.2.5 mst.h

#ifndef MST H
#define MST H

#include <iostream>

#include "edgeVector.h"
#include "relabeledEdge.h"

/ ∗∗
Represents a Minimum Spanning Tree (MST) of a graph.

∗/
class MST
{

/ ∗∗ Writes a string representation of the MST to an output stream. ∗/
friend std::ostream& operator <<(std::ostream& os, MST &mst) {

os << mst.noOfEdges() << std::endl;
for (EdgeCount i=0; i<mst.noOfEdges(); i++)

os << mst. mst[i] << std::endl;
return os;

}

public :
/ ∗∗ The default constructor. ∗/
MST()

: mst(0, 0), totalWeight(0)
{}

/ ∗∗ Returns the number of edges of the MST. ∗/
EdgeCount noOfEdges() const {return mst.noOfEdges(); }

/ ∗∗ Returns the sum of the weights of all edges of the MST. ∗/
EdgeWeightBig totalWeight() const {return totalWeight; }

/ ∗∗ Adds an edge to the MST. ∗/
void add(const RelabeledEdge &edge);

/ ∗∗ Adds an edge to the MST. ∗/
void add(const RelabeledEdgeWithoutSource &edge);

/ ∗∗ Adds an edge to the MST. ∗/
void add(const Edge &edge);

private :
EdgeVector<Edge,

DS MST BLOCK SIZE,
DS MST NO OF PAGES,

66

DS MST PAGE SIZE> mst;

EdgeWeightBig totalWeight;
};

/ ∗∗ Adds an edge to the MST. ∗/
inline void MST::add(const RelabeledEdge &edge)
{

// The original source and target indices are restored ...
Edge originalEdge(edge.originalSource(),

edge.originalTarget(),
edge.weight());

// ... and the original edge is added to the MST.
add(originalEdge);

}

/ ∗∗
Adds an edge to the MST.
This is an explicit copy of the add method for a RelabeledEdge
in order to avoid virtual methods.

∗/
inline void MST::add(const RelabeledEdgeWithoutSource &edge)
{

// The original source and target indices are restored ...
Edge originalEdge(edge.originalSource(),

edge.originalTarget(),
edge.weight());

// ... and the original edge is added to the MST.
add(originalEdge);

}

/ ∗∗ Adds an edge to the MST. ∗/
inline void MST::add(const Edge &edge)
{

// add the given edge to the MST
mst.push back(edge);

// update total weight
totalWeight += edge.weight();

}

#endif // MST H

B.2.6 sparingStack.h

#ifndef SPARINGSTACK H
#define SPARINGSTACK H

/ ∗∗
A CommonPoolOfBlocks manages blocks which can contain
several elements of a specified value type.
It can be used by several SparingStacks.

∗/
template <typename value type, int elementsPerBlock, int noOfBlocks>
class CommonPoolOfBlocks
{

public :

67

/ ∗∗
A block which can contain several elements.

∗/
class Block
{

public :
/ ∗∗ The default constructor. ∗/
Block()

: size(0), prev(0)
{}

/ ∗∗
Adds a element to the block.
Precondition(!): full() must return false.

∗/
void push(const value type &element) {

elements[size++] = element;
}

/ ∗∗
Returns a reference to the last element.
Precondition(!): empty() must return false.

∗/
const value type & top() const {return elements[size-1]; }

/ ∗∗
Removes the last element.
Precondition(!): empty() must return false.

∗/
void pop() { size--; }

/ ∗∗
Removes all elements so that the block is empty.

∗/
void clear() { size = 0; }

/ ∗∗ Returns true iff the block contains no elements. ∗/
bool empty() const {return (size==0); }

/ ∗∗ Returns true iff the block can’t adopt more elements. ∗/
bool full() const {return (size==elementsPerBlock); }

/ ∗∗ Returns the number of elements which are stored in the block. ∗/
int size() const {return size; }

/ ∗∗ Returns a reference to the element which is stored at the given position. ∗/
const value type & operator [](int index) const {return elements[index]; }

/ ∗∗ Sets the pointer to the previous block. ∗/
void setPrevBlock(Block ∗const prev) { prev = prev; }

/ ∗∗ Returns a pointer to the previous block. ∗/
Block ∗ prevBlock() const {return prev; }

private :
/ ∗∗ The number of elements which are stored in the block. ∗/
int size;

/ ∗∗ A pointer to the previous block. ∗/
Block ∗ prev;

/ ∗∗ The elements. ∗/
value type elements[elementsPerBlock];

};

/ ∗∗ The default constructor. ∗/

68

CommonPoolOfBlocks()
: free(& blocks[noOfBlocks-1]), reserveMemory(0),

totalNoOfBlocks(noOfBlocks), noOfFreeBlocks(noOfBlocks)
{

// initialize the linked list of free blocks
for (int i=noOfBlocks-1; i>0; i--)

blocks[i].setPrevBlock(& blocks[i-1]);
}

/ ∗∗
The destructor.
Blocks which have been created additionally are deleted.

∗/
˜CommonPoolOfBlocks() {

for (int i=0; i< additionalBlocks.size(); i++) {
delete [] additionalBlocks[i];
DS VERBOSE1(std::cout << std::endl

<< "CommonPoolOfBlocks::˜CommonPoolOfBlocks(): "
<< "additionally created blocks deleted." << std::endl);

}
}

/ ∗∗ Returns a pointer to a free block. ∗/
Block ∗ request() {

if (! free) { // If there are no more free blocks...
// check if reserve memory is available
int noOfNewBlocks = reserveMemory / sizeof (Block);
if (noOfNewBlocks == 0) {

// If there is not enough reserve memory, the program is aborted !
std::cerr << "CommonPoolOfBlocks: request(): No free blocks available !"

<< std::endl;
abort();

}

DS VERBOSE1(std::cout << std::endl << "CommonPoolOfBlocks::request(): "
<< noOfNewBlocks << " new blocks created." << std::endl);

// allocate new blocks according to the available reserve memory
reserveMemory -= noOfNewBlocks ∗ sizeof (Block);

DS LOGGING2(totalNoOfBlocks += noOfNewBlocks;
noOfFreeBlocks += noOfNewBlocks);

Block ∗newBlocks = new Block[noOfNewBlocks];
additionalBlocks.push back(newBlocks);

for (int i=0; i<noOfNewBlocks; i++) {
newBlocks[i].setPrevBlock(free);

free = &newBlocks[i];
}

}

DS LOGGING2(noOfFreeBlocks--);

// return a free block
Block ∗block = free;

free = free->prevBlock();
return block;

}

/ ∗∗ Adds a block which is no longer used to the free-list. ∗/
void release(Block ∗block) {

block->setPrevBlock(free);
free = block;

DS LOGGING2(noOfFreeBlocks++);
}

69

/ ∗∗
Informs that more reserve memory is available.
@param newMemory the space in bytes which can be used by the

request method if more blocks are required.
∗/
void increaseReserveMemory(int newMemory) {

reserveMemory += newMemory;
}

DS LOGGING2(
/ ∗∗ Returns the number of used blocks. ∗/
int noOfBlocksUsed() const {return totalNoOfBlocks - noOfFreeBlocks; }

/ ∗∗ Returns the number of free blocks. ∗/
int noOfBlocksFree() const {return noOfFreeBlocks; }

)

private :
/ ∗∗ The blocks which are initially created. ∗/
Block blocks[noOfBlocks];

/ ∗∗ A pointer to the linked list of free blocks. ∗/
Block ∗ free;

/ ∗∗
The reserve memory in bytes which can be used by the
request method if more blocks are required.

∗/
int reserveMemory;

std::vector<Block ∗> additionalBlocks;

/ ∗∗
The total number of blocks. This is the ’noOfBlocks’ plus the
number of blocks which are created additionally using the
reserve memory.

∗/
int totalNoOfBlocks;

/ ∗∗ The number of free blocks. ∗/
int noOfFreeBlocks;

};

/ ∗∗
A stack which stores its elements in blocks which are managed by
a CommonPoolOfBlocks.

∗/
template <typename value type, int elementsPerBlock, int noOfBlocks>
class SparingStack
{

protected :
/ ∗∗ The type of the used CommonPoolOfBlocks. ∗/
typedef CommonPoolOfBlocks<value type, elementsPerBlock, noOfBlocks> Pool;
/ ∗∗ The type of a Block which stores several elements. ∗/
typedef Pool::Block Block;

public :
/ ∗∗ The default constructor. ∗/
SparingStack() : top(& bottom) {}

/ ∗∗ The destructor. ∗/
˜SparingStack() {

while (top != & bottom) {

70

Block ∗oldBlock = top;
top = top->prevBlock();

oldBlock->clear();
pool->release(oldBlock);

}
}

/ ∗∗
Sets the CommonPoolOfBlocks which should be used.
This method must be called after the object has been created and
before it is used.

∗/
void setPool(Pool ∗pool) { pool = pool; }

/ ∗∗ Returns true iff the stack is empty. ∗/
bool empty() const {return top->empty(); }

/ ∗∗ Adds an element to the stack. ∗/
void push(const value type &element) {

if (top->full()) {
// If the current block is full, request a new one.
Block ∗newBlock = pool->request();
newBlock->setPrevBlock(top);

top = newBlock;
}

top->push(element);
}

/ ∗∗ Returns a reference to the last element. ∗/
const value type & top() const {return top->top(); }

/ ∗∗ Removes the last element. ∗/
void pop() {

top->pop();
if ((top->empty()) && (top != & bottom)) {

// If the current block is now empty, release it.
// (The ’bottom’ block belongs to the stack and is never released.)
Block ∗oldBlock = top;

top = top->prevBlock();
pool->release(oldBlock);

}
}

/ ∗∗ Returns the number of elements which are stored in the stack. ∗/
int size() const {

Block ∗current = top;
int blockCounter = 0;
while (current != & bottom) {

blockCounter++;
current = current->prevBlock();

}
return top->size() + (blockCounter ∗ DS INT EDGESPER BLOCK);

}

protected :
/ ∗∗ A pointer to the used CommonPoolOfBlocks. ∗/
Pool ∗ pool;

/ ∗∗ A pointer to the list of blocks which store the elements. ∗/
Block ∗ top;

/ ∗∗ The bottom block which belongs to the stack. ∗/
Block bottom;

};

/ ∗∗

71

A specialized SparingStack which stores RelabeledEdgeWithoutSource-objects.
∗/
template <int elementsPerBlock, int noOfBlocks>
class REWSSparingStack : public SparingStack<RelabeledEdgeWithoutSource,

elementsPerBlock,
noOfBlocks>

{
public :

/ ∗∗
Determines the edge with minimum weight.
It is added to the resulting minimum spanning tree and
the target node ID is returned.
@param result a reference to the MST object which stores

the resulting minimum spanning tree
∗/
NodeID determineMinEdge(MST &result) const {

// determine the edge with minimum weight
RelabeledEdgeWithoutSource minEdge = top();
Block ∗current = top;
while (true) {

for (int index=current->size()-1; index >= 0; index--) {
if ((∗current)[index] < minEdge) minEdge = (∗current)[index];

}
if (current == & bottom) break ;
current = current->prevBlock();

}

// Add the edge with minimum weight incident to the
// current node to the resulting minimum spanning tree.
result.add(minEdge);

DS VERBOSE2(std::cout << "(!!! MST::add = "
<< minEdge << ")");

return minEdge.target();
}

};

#endif // SPARINGSTACK H

B.2.7 duplicatesRemover.h

#ifndef DUPLICATESREMOVER H
#define DUPLICATESREMOVER H

/ ∗∗
A container which can be used as an ’intermediate station’ in order
to remove multiple edges. If there is more than one edge with the
same target node (the source node is always the same during one pass),
only the edge with minimum weight is preserved.
If the capacity of the container is exhausted, further edges which can’t
be stored are output directly.

∗/
template <typename SuperContainer>
class DuplicatesRemover
{

public :
/ ∗∗

Creates a DuplicatesRemover.
@param superContainer a pointer to the super container, i.e. the container

that uses this DuplicatesRemover (either a Buckets or
a PQueue object). This is required in order to be able
to put the edges to the super container when the capacity

72

of this container is exhausted or when this container is
cleared.

∗/
DuplicatesRemover(SuperContainer ∗superContainer)

: superContainer(superContainer), size(0)
{}

/ ∗∗
Adds an edge to the container.
If an edge with the same target node is already in the container,
the new edge replaces the old one if it has a lower weight, otherwise
it is discarded.

∗/
void insert(const RelabeledEdgeWithoutSource &edge, NodeID source) {

int index = find(edge.target());
if (empty(index)) {

// There is NO edge with the same target node.
if (size == maxSize) {

// The container is full, so the current edge has to be
// output directly.

superContainer->add(RelabeledEdge(edge, source));
}
else {

// Add the edge to the container
hashMap[index] = HashMapElement(edge, size);
edges[size++] = edge;

}
}
else {

// There is another edge with the same target node.
// So this a duplicate !
DS LOGGING2(logging.duplicates().increase());
if (edge < hashMap[index].first) {

// The current edge has a lower weight than the existing edge.
// Therefore the existing edge is replaced.

edges[hashMap[index].second] = edge;
hashMap[index].first = edge;

}
}

}

/ ∗∗ Clears the container. The edges are written to the appropriate buckets. ∗/
void clear(NodeID source) {

while (size > 0) {
clearLocal(edges[-- size].target());

superContainer->add(RelabeledEdge(edges[size], source));
}

}

private :
/ ∗∗ The capacity of the container. ∗/
static const EdgeCount maxSize = 1024;

/ ∗∗ The size of the hash map. ∗/
static const EdgeCount hashMapSize = 2 ∗ maxSize;

/ ∗∗
The type of a hashMap-element.
The first component stores the edge, the second the index in the
array ’ edges’.

∗/
typedef std::pair<RelabeledEdgeWithoutSource, int > HashMapElement;

/ ∗∗
This array contains all edges without vacancies.
This is useful in order to clear the container without traversing
the whole hashMap.

73

∗/
RelabeledEdgeWithoutSource edges[maxSize];

/ ∗∗ The hashMap which contains the edges. ∗/
HashMapElement hashMap[hashMapSize];

/ ∗∗ The number of edges which are stored in this container. ∗/
EdgeCount size;

/ ∗∗
A pointer to the super container, i.e. the container that uses
this DuplicatesRemover (either a Buckets or a PQueue object).
This is required in order to be able to put the edges to the
super container when the capacity of this container is exhausted
or when this container is cleared.

∗/
SuperContainer ∗ superContainer;

/ ∗∗ Returns the hash value for the given node ID. ∗/
int hashFunction(NodeID x) const {

return x % hashMapSize;
}

/ ∗∗
Returns the position of an edge with the given node ID in the hashMap.
If no appropriate edge is found, the position where such an edge should
be stored is returned.

∗/
int find(NodeID x) const {

int i = hashFunction(x);
while ((hashMap[i].first.target() != x) && (! empty(i)))

i = (i+1) % hashMapSize;
return i;

}

/ ∗∗
Removes entries from the hashMap beginning with the hash value of
the given node ID and ending with the first empty entry which is found.

∗/
void clearLocal(NodeID x) {

int i = hashFunction(x);
while (! empty(i)) {

hashMap[i].first = RelabeledEdgeWithoutSource();
i = (i+1) % hashMapSize;

}
}

/ ∗∗ Returns true iff the given position in the hashMap is empty. ∗/
bool empty(int index) const {

if ((hashMap[index].first.originalSource() == 0) &&
(hashMap[index].first.originalTarget() == 0)) return true ;

return false ;
}

};

#endif // DUPLICATESREMOVER H

74

B.3 Base Case

B.3.1 kruskal.h

#ifndef KRUSKAL H
#define KRUSKAL H

#include <vector>

#include "../data structures/edgeVector.h"
#include "../data structures/mst.h"

/ ∗∗
Represents Kruskal’s algorithm for determining a Minimum Spanning Tree
of a weighted graph and the required union/find data structure.

∗/
template < typename EdgeType = Edge >
class Kruskal
{

public :
/ ∗∗

Computes a MST of a graph.
@param graph a reference to an EdgeVector which represents the graph
@param result a reference to a MST object which stores the result

∗/
Kruskal(EdgeVector<EdgeType> &graph, MST &result)

: graph(graph), result(result)
{

computeMST();
}

/ ∗∗
The destructor.
The given graph is deleted.

∗/
˜Kruskal() {delete & graph; }

private :
/ ∗∗ Computes a MST of the graph. ∗/
void computeMST();

/ ∗∗ Initializes the union/find data structure. ∗/
void initUnionFind();

/ ∗∗
Performs a find operation.
Path compression is applied.
@param node the identifier of the node whose set should be determined
@return the identifier of the canonical node which represents the set

which "node" belongs to
∗/
NodeID find(NodeID node);

/ ∗∗
Performs a union operation.
@return true iff node1 and node2 have belonged to different sets

∗/
bool unite(NodeID node1, NodeID node2);

/ ∗∗ Reference to the given graph. ∗/
EdgeVector<EdgeType> & graph;

/ ∗∗ Reference to a MST object which stores the result. ∗/
MST & result;

75

/ ∗∗
A vector which contains for each node the identifier of the parent node.
The canonical node of a set (= the root of a tree) points to itself.

∗/
std::vector<NodeID> parent;

/ ∗∗
A vector which contains for each node the height of the belonging tree.
Only the values of canonical nodes are relevant.

∗/
std::vector< char > height;

/ ∗∗ Counts the number of edges which have been added to the resulting MST ∗/
EdgeCount edgesAddedToResult;

};

/ ∗∗
Performs a find operation.
Path compression is applied.
@param node the identifier of the node whose set should be determined
@return the identifier of the canonical node which represents the set

which "node" belongs to
∗/
template < typename EdgeType >
inline NodeID Kruskal<EdgeType>::find(NodeID node)
{

// find the root
NodeID root = node;
while (parent[root] != root) root = parent[root];

// apply path compression
NodeID tmp;
while (parent[node] != node) {

tmp = parent[node];
parent[node] = root;

node = tmp;
}

return root;
}

/ ∗∗
Performs a union operation.
@return true iff node1 and node2 have belonged to different sets

∗/
template < typename EdgeType >
inline bool Kruskal<EdgeType>::unite(NodeID node1, NodeID node2)
{

NodeID root1 = find(node1);
NodeID root2 = find(node2);

// A cycle would be produced. Therefore the union operation is cancelled.
if (root1 == root2) return false ;

// Add the smaller tree to the bigger tree
if (height[root1] < height[root2]) {

parent[root1] = root2;
}
else {

parent[root2] = root1;

// Increment the height of the resulting tree if both trees have
// the same height
if (height[root1] == height[root2]) height[root1]++;

76

}
return true ;

}

#endif // KRUSKAL H

B.3.2 kruskal.cpp

#include "kruskal.h"

#include "../utils/utils.h"

/ ∗∗ Computes a MST of the graph. ∗/
template < typename EdgeType >
void Kruskal<EdgeType>::computeMST()
{

// sort
DS LOGGING2(logMemoryUsage("before sorting"));
DS VERBOSE1(std::cout << std::endl << "Kruskal: sort edges" << std::endl);

graph.sortByWeight();
DS LOGGING2(logMemoryUsage("after sorting"));
DS LOGGING1(logging.events().push back(LoggingEvent("Kruskal: edges sorted")));

// initialize
DS VERBOSE1(std::cout << std::endl << "Kruskal: initialize data structures"

<< std::endl);
initUnionFind();
DS LOGGING2(logMemoryUsage("after initialization"));
DS LOGGING1(logging.events().push back(

LoggingEvent("Kruskal: data structures initialized")));

// process edges
DS VERBOSE1(std::cout << std::endl << "Kruskal: process edges" << std::endl;

Percent percent(graph.noOfEdges()));
// abort the for-loop when the MST is complete or when all edges have been processed.
for (EdgeCount i=0;

(edgesAddedToResult < graph.noOfNodes()-1) && (i< graph.noOfEdges());
i++) {

DS VERBOSE1(percent.printStatus(i));

// perform union operation according to the current edge
if (unite(graph[i].source(), graph[i].target())) {

// The current edge doesn’t produce a cyle.
// Hence, add it to the resulting MST.

result.add(graph[i]);
edgesAddedToResult++;

}
}

DS LOGGING1(logging.events().push back(LoggingEvent("Kruskal: edges processed")));

}

/ ∗∗ Initializes the union/find data structure. ∗/
template < typename EdgeType >
void Kruskal<EdgeType>::initUnionFind()
{

// init parent vector

77

parent.resize(graph.noOfNodes());
for (NodeCount i=0; i< parent.size(); i++) parent[i] = i;

// init height vector
height.resize(graph.noOfNodes());

edgesAddedToResult = 0;
}

B.4 Buckets

B.4.1 buckets.h

#ifndef BUCKETS H
#define BUCKETS H

#include <vector>

#include "../stxxl/containers/stack.h"
#include "../data structures/sparingStack.h"

#include "../data structures/edgeVector.h"
#include "../data structures/mst.h"

/ ∗∗
Represents an algorithm for reducing the number of nodes
of a graph (in order to compute a minimum spanning tree)
and the required data structures.
This implementation uses several buckets.

template parameter:
The number of nodes per bucket.
This value doesn’t apply to the first bucket, because
it contains the edges of the first " noOfNodesInIntMem"
nodes.

∗/
template <NodeCount nodesPerBucket = 1>
class Buckets
{
public :

typedef int BucketID;

private :
/ ∗∗ The type of an external bucket which contains the edges of several nodes. ∗/
typedef stxxl::STACK GENERATOR<RelabeledEdge,

stxxl::external,
stxxl::grow shrink2,
DS EXT PAGE SIZE,
DS EXT BLOCK SIZE>::result EdgesOfSeveralNodes;

/ ∗∗ The type of an internal bucket which contains the edges of one node. ∗/
typedef REWSSparingStack<DS INT EDGESPER BLOCK, DS INT NO OF BLOCKS> EdgesOfOneNode;

/ ∗∗ The type of the common pool of the internal buckets. ∗/
typedef CommonPoolOfBlocks<RelabeledEdgeWithoutSource,

DS INT EDGESPER BLOCK,
DS INT NO OF BLOCKS> PoolEdgesOfOneNode;

public :
/ ∗∗ Computes the number of external buckets that are needed. ∗/
static BucketID noOfExtBuckets(NodeCount noOfNodes, NodeCount noOfNodesInIntMem);

78

/ ∗∗
Reduces the number of nodes of a graph (in order to
compute a minimum spanning tree).
@param graph a reference to an EdgeVector which represents the graph
@param result a reference to a MST object which stores the result
@param noOfBuckets the number of external buckets which should be used
@param noOfNodesInIntMem the number of nodes which fit in internal memory

∗/
Buckets(EdgeVector<Edge> &graph, MST &result,

BucketID noOfBuckets, NodeCount noOfNodesInIntMem)
: graph(graph), result(result), extBuckets(noOfBuckets-1),

noOfNodesInIntMem(noOfNodesInIntMem),
prefetchPool(DS EXT PREFETCHPOOL), writePool(DS EXT WRITE POOL)

{
initBuckets();
reduceNodes();

}

/ ∗∗
Returns a pointer to the first external bucket which contains the
edges of the nodes which fit in internal memory.

∗/
InternalMemoryBucket ∗ getIntMemBucket() {return firstExtBucket; }

/ ∗∗
Adds the given edge to the appropriate external bucket or
to the appropriate internal bucket if the edge belongs
to the external bucket which is processed at the moment.

∗/
void add(const RelabeledEdge &edge);

private :
/ ∗∗ Reference to the given graph. ∗/
EdgeVector<Edge> & graph;

/ ∗∗ Reference to a MST object which stores the result. ∗/
MST & result;

/ ∗∗ The number of nodes which fit in internal memory. ∗/
NodeCount noOfNodesInIntMem;

/ ∗∗
The first external bucket which contains the
edges of the nodes which fit in internal memory.

∗/
InternalMemoryBucket ∗ firstExtBucket;

/ ∗∗
The external buckets.
Each bucket contains the edges of several nodes.

∗/
std::vector<EdgesOfSeveralNodes ∗> extBuckets;

/ ∗∗ The prefetch pool that is used by the external buckets. ∗/
stxxl::prefetch pool<EdgesOfSeveralNodes::block type> prefetchPool;

/ ∗∗ The write pool that is used by the external buckets. ∗/
stxxl::write pool<EdgesOfSeveralNodes::block type> writePool;

/ ∗∗
The internal buckets.
Each bucket contains the edges of one node.

∗/
EdgesOfOneNode intBuckets[nodesPerBucket];

79

/ ∗∗
The identifier of the first node in the current external bucket will be used
to compute the internal bucket index of a node.

∗/
NodeID firstNodeIDofCurrentBucket;

/ ∗∗
Initializes the external buckets and distributes the edges to the
external buckets.

∗/
void initBuckets();

/ ∗∗
Reduces the number of nodes.
Only the first bucket "survives".

∗/
void reduceNodes();

/ ∗∗
Returns the ID of the bucket which contains the edges
of the given node.
The first external bucket has the ID -1 because it is a
special case. The second bucket is the first element
of extBuckets and has the ID 0 and so on.

∗/
BucketID bucketID(NodeID nodeID) const ;

/ ∗∗ Adds the given edge to the appropriate external bucket. ∗/
void addToExternalBucket(const RelabeledEdge &edge);

/ ∗∗ Adds the given edge to the bucket which is specified by newBucketID. ∗/
void addToExternalBucket(const RelabeledEdge &edge, BucketID newBucketID);

};

/ ∗∗
Returns the ID of the bucket which contains the edges
of the given node.
The first external bucket has the ID -1 because it is a
special case. The second bucket is the first element
of extBuckets and has the ID 0 and so on.

∗/
template <NodeCount nodesPerBucket>
inline Buckets<nodesPerBucket>::BucketID Buckets<nodesPerBucket>::bucketID(NodeID nodeID)
const
{

if (nodeID < noOfNodesInIntMem) return -1;
return (nodeID - noOfNodesInIntMem) / nodesPerBucket;

}

/ ∗∗ Adds the given edge to the appropriate external bucket. ∗/
template <NodeCount nodesPerBucket>
inline void Buckets<nodesPerBucket>::addToExternalBucket(const RelabeledEdge &edge)
{

if (edge.isSelfLoop()) return ; // Self loops can be ignored.
addToExternalBucket(edge, bucketID(edge.source()));

}

/ ∗∗ Adds the given edge to the bucket which is specified by newBucketID. ∗/
template <NodeCount nodesPerBucket>
inline void Buckets<nodesPerBucket>::addToExternalBucket(const RelabeledEdge &edge,

BucketID newBucketID)
{

if (newBucketID == -1) {
// special case

firstExtBucket->push back(edge);
}

80

else {
extBuckets[newBucketID]->push(edge);

}
}

/ ∗∗
Adds the given edge to the appropriate external bucket or
to the appropriate internal bucket if the edge belongs
to the external bucket which is processed at the moment.

∗/
template <NodeCount nodesPerBucket>
inline void Buckets<nodesPerBucket>::add(const RelabeledEdge &edge)
{

if (edge.source() >= firstNodeIDofCurrentBucket) {
// The relabeled edge still belongs to the current external bucket.
// Therefore it is added to the appropriate internal bucket of one
// single node.

intBuckets[edge.source() - firstNodeIDofCurrentBucket]
.push(edge);

}
else {

// The relabeled edge now belongs to another external bucket.
// Therefore it is added to the appropriate external bucket.
addToExternalBucket(edge, bucketID(edge.source()));

}
}

#endif // BUCKETS H

B.4.2 buckets.cpp

#include "buckets.h"
#include "../data structures/duplicatesRemover.h"
#include "../utils/randomizer.h"

/ ∗∗
Initializes the external buckets and distributes the edges
to the external buckets.

∗/
template <NodeCount nodesPerBucket>
void Buckets<nodesPerBucket>::initBuckets()
{

// create the external buckets
DS VERBOSE1(std::cout << std::endl << "create external buckets" << std::endl;

Percent percent(extBuckets.size()));

firstExtBucket = new InternalMemoryBucket(noOfNodesInIntMem,0);
for (BucketID i=0; i< extBuckets.size(); i++) {

DS VERBOSE1(percent.printStatus(i));
extBuckets[i] = new EdgesOfSeveralNodes(prefetchPool, writePool, 0);

}

// distribute the edges to the external buckets
DS RANDOMIZE(Randomizer<RandomizerFeistel> randomizer(graph.noOfNodes()));

DS VERBOSE1(std::cout << std::endl
<< "distribute edges to external buckets" << std::endl;
percent.reinit(graph.size(), true));

for (; ! graph.empty(); graph.pop back()) {
DS DONT RANDOMIZE(RelabeledEdge edge(graph.back()));
DS RANDOMIZE(RelabeledEdge edge = randomizer.randomize(graph.back()));

81

DS VERBOSE1(percent.printStatus(graph.size()));

DS VERBOSE2(std::cout << edge;)

// The source has to be greater than the target.
if (edge.source() < edge.target()) edge.swap();

DS VERBOSE2(std::cout << " swap " << edge
<< " bucketID: " << bucketID(edge.source())
<< " relabeled ");

// add the current edge to the appropriate external bucket
addToExternalBucket(edge);

DS VERBOSE2(
if (bucketID(edge.source()) == -1)

std::cout << firstExtBucket->back() << std::endl;
else

std::cout << extBuckets[bucketID(edge.source())]->top() << std::endl;)
}

// delete the input graph
delete & graph;

DS LOGGING1(logging.events().push back(
LoggingEvent("edges distributed to external buckets")));

}

/ ∗∗
Reduces the number of nodes.
Only the first bucket "survives".

∗/
template <NodeCount nodesPerBucket>
void Buckets<nodesPerBucket>::reduceNodes()
{

// create/initialize the internal buckets
DS REMOVEDUPLICATES(

DuplicatesRemover< Buckets<nodesPerBucket> > ∗duplRem =
new DuplicatesRemover< Buckets<nodesPerBucket> >(this);

)

PoolEdgesOfOneNode ∗pool = new PoolEdgesOfOneNode();
for (NodeCount i=0; i<nodesPerBucket; i++) {

intBuckets[i].setPool(pool);
}

// The identifier of the first node in the current external bucket will be used
// to compute the internal bucket index of a node.

firstNodeIDofCurrentBucket = noOfNodesInIntMem
+ (extBuckets.size() ∗ nodesPerBucket);

// Process all buckets from the last to the first but one.
for (BucketID currentExtBucketID= extBuckets.size()-1; ! extBuckets.empty();

currentExtBucketID--) {

firstNodeIDofCurrentBucket -= nodesPerBucket;

EdgesOfSeveralNodes & currentExtBucket = ∗ extBuckets[currentExtBucketID];

// Set the size of the prefetch buffer that is used by the current external bucket.
currentExtBucket.set prefetch aggr(DS EXT PREFETCHPOOL);

DS LOGGING2(logging.buckets().push back(

82

LoggingBucket(currentExtBucketID, nodesPerBucket,
currentExtBucket.size())));

// Read current external bucket and distribute the edges to the internal buckets.
DS VERBOSE1(std::cout << std::endl

<< "process bucket " << currentExtBucketID << std::endl
<< " read ";
Percent percent(currentExtBucket.size(), true , 20));

for (; ! currentExtBucket.empty(); currentExtBucket.pop()) {
DS VERBOSE1(percent.printStatus(currentExtBucket.size()));

intBuckets[currentExtBucket.top().source() - firstNodeIDofCurrentBucket]
.push(currentExtBucket.top());

}

DS LOGGING2(logging.buckets().back().setBlocksUsed(pool->noOfBlocksUsed());
logging.buckets().back().setBlocksFree(pool->noOfBlocksFree()));

// Relabel the edges. All nodes (in the current bucket)
// are processed from the last to the first.
DS VERBOSE1(std::cout << std::endl << " relabel ";

percent.reinit(nodesPerBucket, true , 20));

for (NodeID currentNodeIndex = nodesPerBucket-1;
currentNodeIndex < nodesPerBucket; // NodeID is unsigned
currentNodeIndex--) {

EdgesOfOneNode ¤tIntBucket = intBuckets[currentNodeIndex];

DS LOGGING2(logging.buckets().back().
addEdgesProcessed(currentIntBucket.size()));

DS VERBOSE1(percent.printStatus(currentNodeIndex));
DS VERBOSE2(std::cout << std::endl

<< " ∗∗ currentNodeIndex = " << currentNodeIndex);

if (currentIntBucket.empty()) continue ;

// Determine the edge with minimum weight incident to the current node
// and add it to the resulting minimum spanning tree.
NodeID newSource = currentIntBucket.determineMinEdge(result);

// Relabel all edges of the current node.
for (; ! currentIntBucket.empty(); currentIntBucket.pop()) {

// Relabel the current edge.
// Self loops can be ignored.
if (currentIntBucket.top().target() != newSource) {

DS DONT REMOVEDUPLICATES(
add(RelabeledEdge(currentIntBucket.top(), newSource))
);

DS REMOVEDUPLICATES(
duplRem->insert(currentIntBucket.top(), newSource)
);

}
}

DS REMOVEDUPLICATES(duplRem->clear(newSource));

}

DS LOGGING2(
system("ps -C mst -o rss,%mem --no-headers | head -n 1 >> memoryLog.tmp"));

83

// Delete the current bucket which is now empty.
delete extBuckets[currentExtBucketID];

extBuckets.pop back();

// The released memory of the current external bucket
// can be used by the internal buckets.
pool->increaseReserveMemory(DS EXT BLOCK SIZE ∗ DS EXT PAGE SIZE);

}

DS LOGGING2(logging.buckets().push back(
LoggingBucket(-1, firstExtBucket->noOfNodes(),

firstExtBucket->noOfEdges())));

// Delete the common pool of the internal buckets.
delete pool;
DS REMOVEDUPLICATES(delete duplRem);

}

/ ∗∗ Computes the number of external buckets that are needed. ∗/
template <NodeCount nodesPerBucket>
Buckets<nodesPerBucket>::BucketID
Buckets<nodesPerBucket>::noOfExtBuckets(NodeCount noOfNodes, NodeCount noOfNodesInIntMem) {

if (noOfNodes <= noOfNodesInIntMem) return 0;

NodeCount noOfNodesInExtMem = noOfNodes - noOfNodesInIntMem;
BucketID noOfBuckets = noOfNodesInExtMem / nodesPerBucket;
if (noOfNodesInExtMem % nodesPerBucket != 0) noOfBuckets++; // round up
noOfBuckets++; // first external bucket

return noOfBuckets;
}

B.5 Priority Queue

B.5.1 pQueue.h

#ifndef PQUEUE H
#define PQUEUE H

#include "../stxxl/containers/priority queue.h"

#include "../data structures/edgeVector.h"
#include "../data structures/mst.h"

/ ∗∗
Represents an algorithm for reducing the number of nodes
of a graph (in order to compute a minimum spanning tree)
and the required data structures.
This implementation uses an external priority queue.

∗/
class PQueue
{

private :
/ ∗∗ The type of the priority queue that is used during the node reduction phase. ∗/
typedef stxxl::PRIORITY QUEUEGENERATOR<RelabeledEdge,

SourceWeightOrdering<RelabeledEdge>,
DS PQUEUEINTERNAL MEMORY,
DS PQUEUEMAX SIZE>::result PriorityQueue;

84

public :
/ ∗∗

Reduces the number of nodes of a graph (in order to
compute a minimum spanning tree).
@param graph a reference to an EdgeVector which represents the graph
@param result a reference to a MST object which stores the result
@param noOfNodesInIntMem the number of nodes which fit in internal memory

∗/
PQueue(EdgeVector<Edge> &graph, MST &result, NodeCount noOfNodesInIntMem)

: graph(graph), result(result),
noOfNodesInIntMem(noOfNodesInIntMem),
prefetchPool(DS PQUEUEPREFETCHPOOL), writePool(DS PQUEUEWRITE POOL),
pqueue(prefetchPool, writePool)

{
initPQueue();
reduceNodes();

}

/ ∗∗
Returns a pointer to the first external bucket which contains the
edges of the nodes which fit in internal memory.

∗/
InternalMemoryBucket ∗ getIntMemBucket() {return firstExtBucket; }

/ ∗∗
Adds the given edge to the first external bucket or to the
priority queue depending on the source vertex ID.

∗/
void add(const RelabeledEdge &edge);

private :
/ ∗∗ Reference to the given graph. ∗/
EdgeVector<Edge> & graph;

/ ∗∗ Reference to a MST object which stores the result. ∗/
MST & result;

/ ∗∗ The number of nodes which fit in internal memory. ∗/
NodeCount noOfNodesInIntMem;

/ ∗∗
The first external bucket which contains the
edges of the nodes which fit in internal memory.

∗/
InternalMemoryBucket ∗ firstExtBucket;

/ ∗∗ The prefetch pool that is used by the priority queue. ∗/
stxxl::prefetch pool<PriorityQueue::block type> prefetchPool;

/ ∗∗ The write pool that is used by the priority queue. ∗/
stxxl::write pool<PriorityQueue::block type> writePool;

/ ∗∗ The priority queue. ∗/
PriorityQueue pqueue;

/ ∗∗
Initializes the priority queue and distributes the edges to the
first external bucket and the priority queue.

∗/
void initPQueue();

/ ∗∗
Reduces the number of nodes.
Only the first external bucket "survives".

∗/
void reduceNodes();

85

};

/ ∗∗
Adds the given edge to the first external bucket or to the
priority queue depending on the source vertex ID.

∗/
inline void PQueue::add(const RelabeledEdge &edge)
{

if (edge.isSelfLoop()) return ; // Self loops can be ignored.

if (edge.source() < noOfNodesInIntMem) {
// add to the first external bucket

firstExtBucket->push back(edge);
}
else {

// add to the priority queue
pqueue.push(edge);

}
}

#endif // PQUEUE H

B.5.2 pQueue.cpp

#include "pQueue.h"
#include "../data structures/duplicatesRemover.h"
#include "../utils/randomizer.h"

/ ∗∗
Initializes the priority queue and distributes the edges to the
first external bucket and the priority queue.

∗/
void PQueue::initPQueue()
{

// create the first external bucket
firstExtBucket = new InternalMemoryBucket(noOfNodesInIntMem,0);

// distribute the edges to the first external bucket and the priority queue
DS RANDOMIZE(Randomizer<RandomizerFeistel> randomizer(graph.noOfNodes()));

DS VERBOSE1(std::cout << std::endl
<< "distribute edges to the first external bucket and the priority queue"
<< std::endl;
Percent percent(graph.size(), true));

for (; ! graph.empty(); graph.pop back()) {
DS DONT RANDOMIZE(RelabeledEdge edge(graph.back()));
DS RANDOMIZE(RelabeledEdge edge = randomizer.randomize(graph.back()));

DS VERBOSE1(percent.printStatus(graph.size()));
DS VERBOSE2(std::cout << edge << std::endl);

// The source has to be greater than the target.
if (edge.source() < edge.target()) edge.swap();

// add the current edge to the first external bucket
// or to the priority queue
add(edge);

}

86

// delete the input graph
delete & graph;

DS LOGGING1(logging.events().push back(
LoggingEvent("edges distributed to external buckets")));

}

/ ∗∗
Reduces the number of nodes.
Only the first external bucket "survives".

∗/
void PQueue::reduceNodes()
{

if (pqueue.empty()) return ;

DS REMOVEDUPLICATES(
DuplicatesRemover<PQueue> ∗duplRem = new DuplicatesRemover<PQueue>(this));

// get shortest edge incident to the last node
RelabeledEdge minWeightEdge(pqueue.top());

pqueue.pop();
result.add(minWeightEdge);

DS VERBOSE1(std::cout << std::endl << "reduce nodes" << std::endl;
Percent percent(minWeightEdge.source() - noOfNodesInIntMem);
NodeCount processedNodes = 0);

// Process all edges in the priority queue
while (! pqueue.empty()) {

// get current edge
RelabeledEdge currentEdge(pqueue.top());

pqueue.pop();

// check whether the current edge has the same source vertex as the predecessor
if (minWeightEdge.source() == currentEdge.source()) {

// throw the old source vertex away
RelabeledEdgeWithoutSource currentEdgeWithoutSource(currentEdge);

DS DONT REMOVEDUPLICATES(
// add the relabeled edge to the first external bucket
// resp. to the priority queue
add(RelabeledEdge(currentEdgeWithoutSource, minWeightEdge.target()));

)

DS REMOVEDUPLICATES(
// add the edge to the DuplicateRemover
duplRem->insert(currentEdgeWithoutSource, minWeightEdge.target());

// clear the DuplicateRemover if this is the last edge incident to the
// current source vertex
if ((pqueue.empty()) ||

(pqueue.top().source() != minWeightEdge.source())) {
duplRem->clear(minWeightEdge.target());

}
)

}
else {

// the current edge is the shortest one incident to the currently last node
minWeightEdge = currentEdge;

result.add(minWeightEdge);

DS VERBOSE1(processedNodes++;
percent.printStatus(processedNodes));

}

87

}

DS REMOVEDUPLICATES(delete duplRem);
}

B.6 Utilities

B.6.1 generate.h

#ifndef GENERATE H
#define GENERATE H

#include "../data structures/edgeVector.h"

/ ∗∗
Generates a complete graph with the given number of nodes.
The weights of the edges are chosen randomly.

∗/
EdgeVector<> ∗ generateCompleteGraph(NodeCount noOfNodes);

/ ∗∗
Generates a random graph with the given number of nodes
and the given number of edges.
The weights of the edges are chosen randomly, too.

∗/
EdgeVector<> ∗ generateRandomGraph(NodeCount noOfNodes, EdgeCount noOfEdges);

/ ∗∗
Generates a grid graph with "noOfNodesX ∗ noOfNodesY" nodes.
The weights of the edges are chosen randomly.

∗/
EdgeVector<> ∗ generateGridGraph(NodeCount noOfNodesX, NodeCount noOfNodesY);

/ ∗∗
Generates a geometric graph.
The given number of nodes is placed in a square and each node is connected with
the given number of nearest neighbours. Duplicates (which come into existence when
two nodes select each other) are removed.

∗/
EdgeVector<> ∗ generateGeometricGraph(NodeCount noOfNodes, NodeCount noOfNeighbours);

/ ∗∗ Returns a random node identifier between 0 and n-1. ∗/
inline NodeID randomNodeID(NodeID n);

/ ∗∗ Returns a random edge weight. ∗/
inline EdgeWeight randomEdgeWeight();

#endif // GENERATE H

B.6.2 importExport.h

#ifndef IMPORTEXPORT H
#define IMPORTEXPORT H

#include <iostream>

88

#include "../data structures/edgeVector.h"

/ ∗∗
Imports an EdgeVector from a file.
expected format:
the format which is expected by ’importEdgeVectorListOfEdges’ or
the format which is expected by ’importEdgeVectorAdjList’ or
the format which is expected by ’importEdgeVectorCompressed’

∗/
EdgeVector<> ∗ importEdgeVector(const std::string &filename);

/ ∗∗
Imports an EdgeVector from an istream.
expected format:

noOfNodes noOfEdges
source0 target0 weight0
source1 target1 weight1
source2 target2 weight2
...

sourceX and targetX are node indizes; the first used node index should be 0.
∗/
EdgeVector<> ∗ importEdgeVectorListOfEdges(std::istream &in);

/ ∗∗
Imports an EdgeVector from an istream.
expected format:

’a’
noOfNodes
adjacency list of node 1
-1
adjacency list of node 2
-1
...

Each adjacency list is a list of pairs: node1 weight1 node2 weight2 ...
The first used node index should be 1.

∗/
EdgeVector<> ∗ importEdgeVectorAdjList(std::istream &in);

/ ∗∗
Imports an EdgeVector from a file.
expected format:

’c’
noOfNodes noOfEdges
source0 target0 weight0
source1 target1 weight1
source2 target2 weight2
...

sourceX and targetX are node indizes; the first used node index should be 0.
Each 32-bit number (sourceX, targetX, weightX) should be represented by 4 chars
and there should be no spaces and newlines after the number of edges.
If necessary, several files are used so that the file size limit isn’t exceeded.

∗/
EdgeVector<> ∗ importEdgeVectorCompressed(const std::string &filename);

/ ∗∗

89

Exports an EdgeVector to an ostream.
created format:

’a’
noOfNodes
adjacency list of node 1
-1
adjacency list of node 2
-1
...

Each adjacency list is a list of pairs: node1 weight1 node2 weight2 ...
The first used node index is 1.

∗/
void exportEdgeVectorAdjList(std::ostream &out, EdgeVector<> &edges);

/ ∗∗
Exports an EdgeVector to a file.
created format:

’c’
noOfNodes noOfEdges
source0 target0 weight0
source1 target1 weight1
source2 target2 weight2
...

sourceX and targetX are node indizes; the first used node index is 0.
Each 32-bit number (sourceX, targetX, weightX) is represented by 4 chars
and there are no spaces and newlines after the number of edges.
If necessary, several files are used so that the file size limit isn’t exceeded.

∗/
void exportEdgeVectorCompressed(const std::string &filename, EdgeVector<> &edges);

/ ∗∗
Returns the number of nodes of the graph which is stored in the file
with the given name.

∗/
NodeCount noOfNodesInFile(const std::string &filename);

#endif // IMPORTEXPORT H

B.6.3 randomizer.h

#ifndef RANDOMIZER H
#define RANDOMIZER H

/ ∗∗
A bijection that uses the linear congruential method.

∗/
class RandomizerLinearCongruence
{

public :
/ ∗∗

The constructor.
A bijection over {0,...p-1 } is initialized, whereat p is the
next prime number greater than or equal to a given n.

∗/
RandomizerLinearCongruence(NodeCount noOfNodes)

{determineNextPrime(noOfNodes); }

90

/ ∗∗ The bijection. ∗/
NodeID operator ()(NodeID nodeID) const {

typedef unsigned long long int bigNumber;

bigNumber x = nodeID;
const bigNumber a = 321321;
const bigNumber c = 1;
bigNumber m = prime;

// the linear congruential method
return (a ∗ x + c) % m;

}

private :
/ ∗∗ The next prime number >= the given number of nodes. ∗/
NodeCount prime;

/ ∗∗ Determines the next prime number >= the given number of nodes. ∗/
void determineNextPrime(NodeCount noOfNodes) {

NodeCount p;
for (p = noOfNodes-1; ! isPrime(p); p++);

prime = p;
}

/ ∗∗ Returns true iff the given number is prime. ∗/
bool isPrime(NodeCount p) const {

for (NodeCount i=2; i <= std::sqrt((double)p); i++) {
if (p % i == 0) return false ;

}
return true ;

}
};

/ ∗∗
A bijection that uses Feistel permutations.

∗/
class RandomizerFeistel
{

public :
/ ∗∗

The constructor.
A bijection over {0,...,rˆ2-1 } is initialized, whereat r is the
next integer greater than or equal to the square root of a given n.

∗/
RandomizerFeistel(NodeCount noOfNodes) {

// compute the next integer >= the square root of the given number of nodes
sqRoot = (NodeID)std::sqrt((double)noOfNodes);

if ((NodeCount) sqRoot ∗ sqRoot < noOfNodes) sqRoot++;
// initialize the table of random numbers (used by the Feistel permutations)
initRandomNumbers();

}

/ ∗∗ The bijection. ∗/
NodeID operator ()(NodeID nodeID) const {

// Split the given number into two parts
int a = nodeID / sqRoot;
int b = nodeID % sqRoot;

// Perform the Feistel permutations
for (int i=0; i< noOfIterations; i++) {

int newA = b;
b = a + randomNumbers[i][b];
if (b >= sqRoot) b -= sqRoot; // mod sqRoot
a = newA;

}

91

// Recombine a and b to obtain the result
return a ∗ sqRoot + b;

}

private :
/ ∗∗ The number of performed Feistel permutations. ∗/
static const int noOfIterations = 2;

/ ∗∗ The maximum size of sqRoot. ∗/
static const int maxSqRoot = 0x10000;

/ ∗∗ The next integer >= the square root of the given number of nodes. ∗/
NodeID sqRoot;

/ ∗∗ The table of random numbers (used by the Feistel permutations). ∗/
int randomNumbers[noOfIterations][maxSqRoot];

/ ∗∗ Initializes the table of random numbers. ∗/
void initRandomNumbers() {

for (int i=0; i< noOfIterations; i++)
for (int j=0; j< maxSqRoot; j++) {

// each random number is an integer in {0,..., sqRoot-1 }
randomNumbers[i][j] = (int)(rand() / (double)(RAND MAX+1.0) ∗ sqRoot);

}
}

};

/ ∗∗
A bijection over {0,...,n-1 } that can be used to randomize an Edge
in order to obtain a (pseudo-)random permutation.
Either RandomizerLinearCongruence or RandomizerFeistel can be used
as underlying bijection.

∗/
template <typename Bijection = RandomizerLinearCongruence>
class Randomizer
{

public :
/ ∗∗ The constructor. ∗/
Randomizer(NodeCount noOfNodes)

: noOfNodes(noOfNodes), bijection(noOfNodes)
{}

/ ∗∗
Randomizes an Edge. The source and the target vertices are randomized
using the bijection. The original source and target vertices are
saved, so a RelabeledEdge, which contains both the randomized and the
original vertices, is returned.

∗/
RelabeledEdge randomize(const Edge &edge) const {

return RelabeledEdge(randomize(edge.source()),randomize(edge.target()),
edge.weight(),edge.source(),edge.target());

}

private :
/ ∗∗ The number of nodes that specifies the domain and co-domain of the bijection. ∗/
NodeCount noOfNodes;

/ ∗∗ The underlying bijection. ∗/
Bijection bijection;

/ ∗∗ Randomizes a node ID using the underlying bijection. ∗/
NodeID randomize(NodeID nodeID) const {

NodeID x = nodeID;

// The application of the underlying bijection is repeated

92

// until the result is in the correct co-domain.
do {

x = bijection(x);
} while (x >= noOfNodes);

return x;
}

};

#endif // RANDOMIZER H

93

Bibliography

[ABT00] L. Arge, G. Brodal, and L. Toma. On external memory MST, SSSP and multi-way planar
graph separation. In7th Scandinavian Workshop on Algorithm Theory, volume 1851 ofLNCS,
pages 433–447. Springer, 2000.

[ABW02] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional approach to external graph
algorithms.Algorithmica, 32(3):437–458, 2002.4

[AV88] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.1

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide.
Addison-Wesley, 1999.9

[CGG+95] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External-memory graph algorithms. InProc. ACM-SIAM Symp. on Discrete Algorithms, pages
139–149, 1995.4

[Dem03] R. Dementiev.<stxxl> home page. http://www.mpi-sb.mpg.de/∼rdementi/stxxl.html, July
2003. 8

[DS03] R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In15th ACM Symposium
on Parallelism in Algorithms and Architectures, pages 138–148, 2003.8, 15

[JaJ92] J. JaJa.An Introduction to Parallel Algorithms. Addison-Wesley, 1992.3

[Knu98] Donald E. Knuth.The Art of Computer Programming, volume 2. Addison-Wesley, 3rd edition,
1998.

[Liu01] Yan Liu. Minimum spanning trees.
http://www.csee.wvu.edu/∼ksmani/courses/fa01/random/lecnotes/lecture11.pdf, Fall 2001.
Lecture notes, “Randomized Algorithms” course, LDCSEE, West Virginia University.3

[MS94] B.M.E. Moret and H.D. Shapiro. An empirical assessment of algorithms for constructing a
minimum spanning tree.DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 15:99–117, 1994.15

[MSS03] U. Meyer, P. Sanders, and J. Sibeyn, editors.Algorithms for Memory Hierarchies, volume
2625 ofLNCS Tutorial. Springer, 2003.1, 4

[NR99] Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Luby-
Rackoff revisited. Journal of Cryptology: the journal of the International Association for
Cryptologic Research, 12(1):29–66, 1999.13

[OW96] T. Ottmann and P. Widmayer.Algorithmen und Datenstrukturen. Spektrum Akademischer
Verlag, 3rd edition, 1996.2

[San00] P. Sanders. Fast priority queues for cached memory.ACM Journal of Experimental Algorith-
mics, 5(7), 2000. 6

94

[Sed92] R. Sedgewick.Algorithmen. Addison-Wesley, 1992.

[Ski98] Steven S. Skiena.The Algorithm Design Manual. Springer, 1998.2

[SM] J. Sibeyn and U. Meyer. External connected components and beyond.unpublished. 4, 5

95

	Introduction
	Minimum Spanning Trees
	External Memory Model
	External Memory Minimum Spanning Trees

	Dense Graphs
	Sparse Graphs
	General Approach
	Boruvka's Algorithm
	Sibeyn and Meyer's Algorithm

	Implementation
	<stxxl> Library
	Data Structures
	Base Case
	Node Reduction with Buckets
	Node Reduction with a Priority Queue
	Main Program
	Randomization
	Removal of Parallel Edges
	Ideas for Further Improvements

	Evaluation
	Test Data
	Test Environment and Settings
	Test Runs and Results

	Reference Manual
	Hierarchical Index
	Compound Index
	Class Documentation

	Source Code
	Main
	Data Structures
	Base Case
	Buckets
	Priority Queue
	Utilities

